from collections import defaultdict, deque import sys input = sys.stdin.readline def iinput(): return int(input()) def sinput(): return input().rstrip() def i0input(): return int(input()) - 1 def linput(): return list(input().split()) def liinput(): return list(map(int, input().split())) def miinput(): return map(int, input().split()) def li0input(): return list(map(lambda x: int(x) - 1, input().split())) def mi0input(): return map(lambda x: int(x) - 1, input().split()) INF = 10**20 MOD = 1000000007 from random import random, seed seed(101010) class UnionFindTree: def __init__(self, initial_size:int) -> None: self.n_nodes = initial_size self.parents = [i for i in range(initial_size)] self.ranks = [0 for i in range(initial_size)] self.size = [1 for i in range(initial_size)] self.n_roots = initial_size def root(self, n:int) -> int: if self.parents[n] == n: return n else: self.parents[n] = self.root(self.parents[n]) return self.parents[n] def same(self, n:int, m:int) -> bool: return (self.root(n) == self.root(m)) def unite(self, n:int, m:int) -> None: if self.same(n, m): return self.n_roots -= 1 n, m = self.root(n), self.root(m) if self.ranks[n] < self.ranks[m]: self.parents[n] = m self.size[m] += self.size[n] else: self.parents[m] = n self.size[n] += self.size[m] if self.ranks[n] == self.ranks[m]: self.ranks[n] += 1 def get_roots(self) -> set: return set([self.root(x) for x in range(self.n_nodes)]) def count_roots(self) -> int: return self.n_roots def get_tree_size(self, n:int) -> int: return self.size[self.root(n)] def random_direction(p): for i in range(3): p[i+1] += p[i] r = random() for i in range(4): if p[i] > r: return i H, W, p = liinput() # URDL probability = [[[0.50] * W for _ in [0] * H], [[0.50] * W for _ in [0] * H], [[0.50] * W for _ in [0] * H], [[0.50] * W for _ in [0] * H]] p /= 100 direction_inv = {'U': 0, 'R': 1, 'D': 2, 'L': 3} direction = 'URDL' direction_coord = [(-1, 0), (0, 1), (1, 0), (0, -1)] uf = UnionFindTree(H * W) for i in range(W): probability[0][0][i] = 0 probability[2][-1][i] = 0 for i in range(H): probability[1][i][-1] = 0 probability[3][i][0] = 0 for _ in [0] * 1000: place = [0, 0] res = [] seen = [[False] * W for _ in [0] * H] seen[0][0] = True for _ in [0] * 400: prob_tmp = [] for i in range(4): try: dr, dc = direction_coord[i] nx = place[0] + dr ny = place[1] + dc if nx < 0 or nx >= H or ny < 0 or ny >= W or seen[nx][ny]: prob_tmp.append(0) else: prob_tmp.append(probability[i][place[0]][place[1]]) except IndexError: print('IndexError', place) sum_prob = sum(prob_tmp) if sum_prob == 0: prob_tmp = [] for i in range(4): try: prob_tmp.append(probability[i][place[0]][place[1]]) except IndexError: print('IndexError', place) sum_prob = sum(prob_tmp) for i in range(4): prob_tmp[i] /= sum_prob d = random_direction(prob_tmp) dr, dc = direction_coord[d] place[0] += dr place[1] += dc seen[place[0]][place[1]] = True res.append(direction[d]) print(''.join(res), flush=True) thr = iinput() if thr == -1: exit() place = [0, 0] for i in range(thr): d = direction_inv[res[i]] probability[d][place[0]][place[1]] = 1 dr, dc = direction_coord[d] uf.unite(place[0] * W + place[1], (place[0] + dr) * W + place[1] + dc) place[0] += dr place[1] += dc probability[(d+2)%4][place[0]][place[1]] = 1 if len(res) > thr: d = direction_inv[res[thr]] q = probability[d][place[0]][place[1]] if q < 1: new_p = (p * q) / (p * q + 1 - q) probability[d][place[0]][place[1]] = new_p dr, dc = direction_coord[d] place[0] += dr place[1] += dc probability[(d+2)%4][place[0]][place[1]] = new_p if uf.same(0, H*W-1): seen = [[None] * W for _ in [0] * H] seen[0][0] = '' que = deque() que.append((0, 0)) while que: x, y = que.popleft() for i in range(4): dx, dy = direction_coord[i] nx = x + dx ny = y + dy if nx < 0 or nx >= H or ny < 0 or ny >= W or not uf.same(x * W + y, nx * W + ny): continue if seen[nx][ny] is not None: continue seen[nx][ny] = seen[x][y] + direction[i] que.append((nx, ny)) if nx == H-1 and ny == W-1: print(seen[nx][ny], flush=True) g = iinput() if g == -1: exit() for pp in probability: for ppp in pp: print(ppp) print()