#pragma GCC optimize("O3,unroll-loops") #include #include #include using namespace std; using namespace chrono; using namespace __gnu_pbds; #define ll long long int #define loop(a,b,i) for(long long int i=a;i=b;i--) #define cn continue; #define pb push_back #define db double #define mp make_pair #define sz(x) (ll)((x).size()) #define endl "\n" #define lb lower_bound #define ub upper_bound #define f first #define se second #define vll vector #define pll pair #define vpll vector< pair > #define all(x) x.begin(),x.end() #define print(a,n) for(ll i=0; i, null_type, less>, rb_tree_tag, tree_order_statistics_node_update > pbds; const ll inf = 1e18; const ll mod = 998244353; const ll MAX = 8000000000000000064LL; const ll MIN = -8000000000000000064LL; ll add(ll x, ll y) {ll res = x + y; return (res >= mod ? res - mod : res);} ll mul(ll x, ll y) {ll res = x * y; return (res >= mod ? res % mod : res);} ll sub(ll x, ll y) {ll res = x - y; return (res < 0 ? res + mod : res);} ll power(ll x, ll y) {ll res = 1; x %= mod; while (y) {if (y & 1)res = mul(res, x); y >>= 1; x = mul(x, x);} return res;} ll mod_inv(ll x) {return power(x, mod - 2);} ll gcd(ll a,ll b) {if(b==0)return a; return gcd(b,a%b);} ll lcm(ll x, ll y) { ll res = x / gcd(x, y); return (res * y);} // ll nCr(ll n,ll r){ll ans=fact[n]; ans*=mod_inv(fact[n-r]);ans%=mod; ans*=mod_inv(fact[r]);ans%=mod; return ans;} const ll dx[] = {-1,1,0,0,1,1,-1,-1}; const ll dy[] = {0,0,1,-1,-1,1,-1,1}; signed main() { quick; // #ifndef ONLINE_JUDGE // freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); // #endif ll tc = 1; cin >> tc; loop(0,tc,Q) { // cout << "Case #" << Q+1 << ": "; db t, f, d; cin >> t >> f >> d; db a = 1.0; db b = (20.0 * f * t); db c = -(20.0 * f * d); db res1 = (-b + (db)(sqrt(b*b - 4.0*a*c))) / 2.0; db res2 = (-b - (db)(sqrt(b*b - 4.0*a*c))) / 2.0; res1 *= (18.0 / 5.0); res2 *= (18.0 / 5.0); res1 = max(res1, res2); string ans1 = to_string(res1); string res; loop(0, 6, i) { res += ans1.back(); ans1.pop_back(); } loop(0, 2, i) { ans1 += res.back(); res.pop_back(); } cout << ans1 << endl; } // cerr << "time taken : " << (float)clock() / CLOCKS_PER_SEC << " secs" << endl; return 0; }