#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; template using umap = std::unordered_map; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) std::begin(iterable), std::end(iterable) #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return out; } else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) { out << ' '; } return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t parse_i128(std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t parse_u128(std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = parse_i128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = parse_u128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return in; } else { return operator>>(in >> std::get(a), a); } } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num -1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template > = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template auto isize(const Iterable& iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template > = nullptr> auto generate_vector(int n, Gen generator) { std::vector v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template auto generate_range_vector(T n) { return generate_range_vector(0, n); } template void sort_unique_erase(std::vector& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { if (y <= x) return false; x = y; return true; } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num >= 0) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include #include using mint = atcoder::modint998244353; std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } #include #include #include #include #include #include namespace suisen { /** * refernce: https://37zigen.com/tonelli-shanks-algorithm/ * calculates x s.t. x^2 = a mod p in O((log p)^2). */ template std::optional optional_sqrt(mint a) { static int p = mint::mod(); if (a == 0) return std::make_optional(0); if (p == 2) return std::make_optional(a); if (a.pow((p - 1) / 2) != 1) return std::nullopt; mint b = 1; while (b.pow((p - 1) / 2) == 1) ++b; static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz; mint x = a.pow((q + 1) / 2); b = b.pow(q); for (int shift = 2; x * x != a; ++shift) { mint e = a.inv() * x * x; if (e.pow(1 << (tlz - shift)) != 1) x *= b; b *= b; } return std::make_optional(x); } }; /** * calculates x s.t. x^2 = a mod p in O((log p)^2). * if not exists, raises runtime error. */ template auto sqrt(mint a) -> decltype(mint::mod(), mint()) { return *suisen::optional_sqrt(a); } template auto log(mint a) -> decltype(mint::mod(), mint()) { assert(a == 1); return 0; } template auto exp(mint a) -> decltype(mint::mod(), mint()) { assert(a == 0); return 1; } template auto pow(mint a, T b) -> decltype(mint::mod(), mint()) { return a.pow(b); } template auto inv(mint a) -> decltype(mint::mod(), mint()) { return a.inv(); } namespace suisen { template class inv_mods { public: inv_mods() {} inv_mods(int n) { ensure(n); } const mint& operator[](int i) const { ensure(i); return invs[i]; } static void ensure(int n) { int sz = invs.size(); if (sz < 2) invs = {0, 1}, sz = 2; if (sz < n + 1) { invs.resize(n + 1); for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i]; } } private: static std::vector invs; static constexpr int mod = mint::mod(); }; template std::vector inv_mods::invs{}; } namespace suisen { template struct FPSNaive : std::vector { static inline int MAX_DEG = std::numeric_limits::max() / 2; using value_type = T; using element_type = rec_value_type_t; using std::vector::vector; FPSNaive(const std::initializer_list l) : std::vector::vector(l) {} static void set_max_deg(int max_deg) { FPSNaive::MAX_DEG = max_deg; } const value_type operator[](int n) const { return n <= deg() ? unsafe_get(n) : value_type{ 0 }; } value_type& operator[](int n) { return ensure_deg(n), unsafe_get(n); } int size() const { return std::vector::size(); } int deg() const { return size() - 1; } int normalize() { while (size() and this->back() == value_type{ 0 }) this->pop_back(); return deg(); } FPSNaive& cut_inplace(int max_deg) { if (deg() > max_deg) this->resize(std::max(0, max_deg + 1)); return *this; } FPSNaive cut(int max_deg) const { return FPSNaive(*this).cut_inplace(max_deg); } FPSNaive operator+() const { return FPSNaive(*this); } FPSNaive operator-() const { FPSNaive f(*this); for (auto& e : f) e = -e; return f; } FPSNaive& operator++() { return ++(*this)[0], * this; } FPSNaive& operator--() { return --(*this)[0], * this; } FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; } FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; } FPSNaive& operator+=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPSNaive& operator-=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; } FPSNaive& operator*=(const value_type x) { for (auto& e : *this) e *= x; return *this; } FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; } FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; } FPSNaive& operator<<=(const int shamt) { this->insert(this->begin(), shamt, value_type { 0 }); return *this; } FPSNaive& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; } friend FPSNaive operator+(FPSNaive f, const value_type &x) { f += x; return f; } friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; } friend FPSNaive operator-(FPSNaive f, const value_type &x) { f -= x; return f; } friend FPSNaive operator*(const FPSNaive &f, const FPSNaive& g) { if (f.empty() or g.empty()) return FPSNaive{}; const int n = f.size(), m = g.size(); FPSNaive h(std::min(MAX_DEG + 1, n + m - 1)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) { if (i + j > MAX_DEG) break; h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j); } return h; } friend FPSNaive operator*(FPSNaive f, const value_type &x) { f *= x; return f; } friend FPSNaive operator/(FPSNaive f, FPSNaive g) { return std::move(div_mod(std::move(f), std::move(g)).first); } friend FPSNaive operator%(FPSNaive f, FPSNaive g) { return std::move(div_mod(std::move(f), std::move(g)).second); } friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; } friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; } friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; } friend std::pair div_mod(FPSNaive f, FPSNaive g) { const int fd = f.normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return { FPSNaive{}, f }; if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} }; const int k = f.deg() - gd; value_type head_inv = g.unsafe_get(gd).inv(); FPSNaive q(k + 1); for (int i = k; i >= 0; --i) { value_type div = f.unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j); } return { q, f.cut_inplace(gd - 1) }; } friend bool operator==(const FPSNaive& f, const FPSNaive& g) { const int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } friend bool operator!=(const FPSNaive& f, const FPSNaive& g) { return not (f == g); } FPSNaive mul(const FPSNaive& g, int max_deg) const { if (this->empty() or g.empty()) return FPSNaive{}; const int n = size(), m = g.size(); FPSNaive h(std::min(max_deg + 1, n + m - 1)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) { if (i + j > max_deg) break; h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j); } return h; } FPSNaive diff() const { if (this->empty()) return {}; FPSNaive g(size() - 1); for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i; return g; } FPSNaive intg() const { const int n = size(); FPSNaive g(n + 1); for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; if (g.deg() > MAX_DEG) g.cut_inplace(MAX_DEG); return g; } FPSNaive inv(int max_deg) const { FPSNaive g(max_deg + 1); const value_type inv_f0 = ::inv(unsafe_get(0)); g.unsafe_get(0) = inv_f0; for (int i = 1; i <= max_deg; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= inv_f0; } return g; } FPSNaive exp(int max_deg) const { assert(unsafe_get(0) == value_type{ 0 }); FPSNaive g(max_deg + 1); g.unsafe_get(0) = value_type{ 1 }; for (int i = 1; i <= max_deg; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive log(int max_deg) const { assert(unsafe_get(0) == value_type{ 1 }); FPSNaive g(max_deg + 1); g.unsafe_get(0) = value_type{ 0 }; for (int i = 1; i <= max_deg; ++i) { g.unsafe_get(i) = i * (*this)[i]; for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive pow(const long long k, int max_deg) const { if (k == 0) return { value_type{ 1 } }; int z = 0; while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z; if (z >= max_deg / k + 1) return FPSNaive{}; const int d = max_deg - z * k; FPSNaive g(d + 1); const value_type inv_f0 = ::inv(unsafe_get(z)); g.unsafe_get(0) = unsafe_get(z).pow(k); for (int i = 1; i <= d; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } * j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j]; g.unsafe_get(i) *= inv_f0 * invs[i]; } g <<= z * k; return g; } FPSNaive sqrt(int max_deg) const { int dl = 0; while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl; if (dl == size()) return FPSNaive{}; if (dl & 1) assert(false); const int d = max_deg - dl / 2; FPSNaive g(d + 1); g.unsafe_get(0) = ::sqrt((*this)[dl]); value_type inv_2g0 = ::inv(2 * g.unsafe_get(0)); for (int i = 1; i <= d; ++i) { g.unsafe_get(i) = unsafe_get(dl + i); for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j); g.unsafe_get(i) *= inv_2g0; } g <<= dl / 2; return g; } value_type eval(value_type x) const { value_type y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i); return y; } private: static inline inv_mods invs; void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, value_type{ 0 }); } const value_type& unsafe_get(int i) const { return std::vector::operator[](i); } value_type& unsafe_get(int i) { return std::vector::operator[](i); } }; } // namespace suisen template auto sqrt(suisen::FPSNaive a) -> decltype(mint::mod(), suisen::FPSNaive{}) { return a.sqrt(suisen::FPSNaive::MAX_DEG == std::numeric_limits::max() / 2 ? suisen::FPSNaive::MAX_DEG : a.deg()); } template auto log(suisen::FPSNaive a) -> decltype(mint::mod(), suisen::FPSNaive{}) { return a.log(suisen::FPSNaive::MAX_DEG == std::numeric_limits::max() / 2 ? suisen::FPSNaive::MAX_DEG : a.deg()); } template auto exp(suisen::FPSNaive a) -> decltype(mint::mod(), suisen::FPSNaive{}) { return a.exp(suisen::FPSNaive::MAX_DEG == std::numeric_limits::max() / 2 ? suisen::FPSNaive::MAX_DEG : a.deg()); } template auto pow(suisen::FPSNaive a, T b) -> decltype(mint::mod(), suisen::FPSNaive{}) { return a.pow(b, suisen::FPSNaive::MAX_DEG == std::numeric_limits::max() / 2 ? suisen::FPSNaive::MAX_DEG : a.deg()); } template auto inv(suisen::FPSNaive a) -> decltype(mint::mod(), suisen::FPSNaive{}) { return a.inv(suisen::FPSNaive::MAX_DEG == std::numeric_limits::max() / 2 ? suisen::FPSNaive::MAX_DEG : a.deg()); } namespace suisen { template using convolution_t = std::vector(*)(const std::vector&, const std::vector&); template struct FPS : public std::vector { using std::vector::vector; FPS(const std::initializer_list l) : std::vector::vector(l) {} FPS(const std::vector& v) : std::vector::vector(v) {} FPS(std::vector&& v) : std::vector::vector(std::move(v)) {} static void set_multiplication(convolution_t multiplication) { FPS::mult = multiplication; } const mint operator[](int n) const noexcept { return n <= deg() ? unsafe_get(n) : 0; } mint& operator[](int n) noexcept { ensure_deg(n); return unsafe_get(n); } int size() const noexcept { return std::vector::size(); } int deg() const noexcept { return size() - 1; } int normalize() { while (this->size() and this->back() == 0) this->pop_back(); return deg(); } FPS& pre_inplace(int max_deg) noexcept { if (deg() > max_deg) this->resize(std::max(0, max_deg + 1)); return *this; } FPS pre(int max_deg) const noexcept { return FPS(*this).pre_inplace(max_deg); } FPS operator+() const { return FPS(*this); } FPS operator-() const { FPS f(*this); for (auto& e : f) e = mint::mod() - e; return f; } FPS& operator++() { ++(*this)[0]; return *this; } FPS& operator--() { --(*this)[0]; return *this; } FPS& operator+=(const mint x) { (*this)[0] += x; return *this; } FPS& operator-=(const mint x) { (*this)[0] -= x; return *this; } FPS& operator+=(const FPS& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPS& operator-=(const FPS& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } FPS& operator*=(const FPS& g) { return *this = FPS::mult(*this, g); } FPS& operator*=(const mint x) { for (auto& e : *this) e *= x; return *this; } FPS& operator/=(FPS g) { const int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) { this->clear(); return *this; } if (gd == 0) return *this *= g.unsafe_get(0).inv(); static constexpr int THRESHOLD_NAIVE_POLY_QUOTIENT = 256; if (gd <= THRESHOLD_NAIVE_POLY_QUOTIENT) { *this = std::move(naive_div_inplace(std::move(g), gd).first); return *this; } std::reverse(this->begin(), this->end()), std::reverse(g.begin(), g.end()); const int k = fd - gd; *this *= g.inv_inplace(k), this->resize(k + 1); std::reverse(this->begin(), this->end()); return *this; } FPS& operator%=(FPS g) { int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return *this; if (gd == 0) { this->clear(); return *this; } static constexpr int THRESHOLD_NAIVE_REMAINDER = 256; if (gd <= THRESHOLD_NAIVE_REMAINDER) return naive_div_inplace(std::move(g), gd).second; *this -= g * (*this / g); return pre_inplace(gd - 1); } FPS& operator<<=(const int shamt) { this->insert(this->begin(), shamt, 0); return *this; } FPS& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } friend FPS operator+(FPS f, const FPS& g) { f += g; return f; } friend FPS operator+(FPS f, const mint x) { f += x; return f; } friend FPS operator-(FPS f, const FPS& g) { f -= g; return f; } friend FPS operator-(FPS f, const mint x) { f -= x; return f; } friend FPS operator*(FPS f, const FPS& g) { f *= g; return f; } friend FPS operator*(FPS f, const mint x) { f *= x; return f; } friend FPS operator/(FPS f, const FPS& g) { f /= g; return f; } friend FPS operator%(FPS f, const FPS& g) { f %= g; return f; } friend FPS operator*(const mint x, FPS f) { f *= x; return f; } friend FPS operator<<(FPS f, const int shamt) { f <<= shamt; return f; } friend FPS operator>>(FPS f, const int shamt) { f >>= shamt; return f; } friend bool operator==(const FPS& f, const FPS& g) { int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } FPS& diff_inplace() { if (this->size() == 0) return *this; for (int i = 1; i <= deg(); ++i) unsafe_get(i - 1) = unsafe_get(i) * i; this->pop_back(); return *this; } FPS& intg_inplace() { int d = deg(); ensure_deg(d + 1); for (int i = d; i >= 0; --i) unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; unsafe_get(0) = 0; return *this; } FPS& inv_inplace(const int max_deg) { if (max_deg <= 60) return *this = FPSNaive(this->begin(), this->end()).inv(max_deg); FPS res{ unsafe_get(0).inv() }; for (int k = 1; k <= max_deg; k *= 2) { FPS tmp(this->pre(k * 2) * (res * res)); res *= 2, res -= tmp.pre_inplace(2 * k); } return *this = std::move(res), pre_inplace(max_deg); } FPS& log_inplace(const int max_deg) { if (max_deg <= 60) return *this = FPSNaive(this->begin(), this->end()).log(max_deg); FPS f_inv = inv(max_deg); diff_inplace(), *this *= f_inv, pre_inplace(max_deg - 1), intg_inplace(); return *this; } FPS& exp_inplace(const int max_deg) { if (max_deg <= 60) return *this = FPSNaive(this->begin(), this->end()).exp(max_deg); FPS res{ 1 }; for (int k = 1; k <= max_deg; k *= 2) res *= ++(pre(k * 2) - res.log(k * 2)), res.pre_inplace(k * 2); return *this = std::move(res), pre_inplace(max_deg); } FPS& pow_inplace(const long long k, const int max_deg) { if (max_deg <= 60) return *this = FPSNaive(this->begin(), this->end()).pow(k, max_deg); int tlz = 0; while (tlz <= deg() and unsafe_get(tlz) == 0) ++tlz; if (tlz * k > max_deg) { this->clear(); return *this; } *this >>= tlz; mint base = (*this)[0]; *this *= base.inv(), log_inplace(max_deg), *this *= k, exp_inplace(max_deg), *this *= base.pow(k); return *this <<= tlz * k, pre_inplace(max_deg); } FPS diff() const { FPS f{ *this }; f.diff_inplace(); return f; } FPS intg() const { FPS f{ *this }; f.intg_inplace(); return f; } FPS inv(const int max_deg) const { FPS f{ *this }; f.inv_inplace(max_deg); return f; } FPS log(const int max_deg) const { FPS f{ *this }; f.log_inplace(max_deg); return f; } FPS exp(const int max_deg) const { FPS f{ *this }; f.exp_inplace(max_deg); return f; } FPS pow(const long long k, const int max_deg) const { FPS f{ *this }; f.pow_inplace(k, max_deg); return f; } mint eval(mint x) const { mint y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i); return y; } private: static inline inv_mods invs; static convolution_t mult; void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, 0); } const mint& unsafe_get(int i) const { return std::vector::operator[](i); } mint& unsafe_get(int i) { return std::vector::operator[](i); } std::pair naive_div_inplace(FPS&& g, const int gd) { const int k = deg() - gd; mint head_inv = g.unsafe_get(gd).inv(); FPS q(k + 1); for (int i = k; i >= 0; --i) { mint div = this->unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) this->unsafe_get(i + j) -= div * g.unsafe_get(j); } return { q, pre_inplace(gd - 1) }; } }; template convolution_t FPS::mult = [](const auto&, const auto&) { std::cerr << "convolution function is not available." << std::endl; assert(false); return std::vector{}; }; } // namespace suisen template auto sqrt(suisen::FPS a) -> decltype(mint::mod(), suisen::FPS{}) { assert(false); } template auto log(suisen::FPS a) -> decltype(mint::mod(), suisen::FPS{}) { return a.log(a.deg()); } template auto exp(suisen::FPS a) -> decltype(mint::mod(), suisen::FPS{}) { return a.exp(a.deg()); } template auto pow(suisen::FPS a, T b) -> decltype(mint::mod(), suisen::FPS{}) { return a.pow(b, a.deg()); } template auto inv(suisen::FPS a) -> decltype(mint::mod(), suisen::FPS{}) { return a.inv(a.deg()); } mint pow(mint a, int k) { mint res = a.pow(abs(k)); return k >= 0 ? res : res.inv(); } int main() { suisen::FPS::set_multiplication([](const auto &a, const auto &b) { return atcoder::convolution(a, b); }); input(int, n, k); FPS f(n + 1); rep(i, n) { read(f[i + 1]); } FPS df = f.diff(); if (df == FPS{}) { print(vector(n, 0)); return 0; } int z = 0; while (df[z] == 0) ++z; FPS g; if (k >= 0) { auto h = (f >> z) * (df >> z).inv(n); h.resize(n + 1); g = (FPS{1} - f).inv(n); loop(k) { g = g.diff() * h; g.resize(n + 1); } } else { auto h = (df >> z) * (f >> (z + 1)).inv(n); h.resize(n + 1); g = df * (FPS{1} - f).inv(n); g.resize(n); g.intg_inplace(); loop(-k - 1) { g *= h; g.resize(n + 1); g >>= 1; g.intg_inplace(); } } g.erase(g.begin()); print(g); return 0; }