#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; const ll mod = 998244353; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define rep(i, n) for (int i = 0; i < n; i++) #define per(i, n) for (int i = n - 1; i >= 0; i--) #define Rep(i, sta, n) for (int i = sta; i < n; i++) #define Per(i, sta, n) for (int i = n - 1; i >= sta; i--) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[8] = {1, -1, 0, 0, 1, 1, -1, -1}; int dy[8] = {0, 0, 1, -1, 1, -1, 1, -1}; template using max_heap = priority_queue; template using min_heap = priority_queue, greater<>>; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template struct ModInt { long long x; static constexpr int MOD = mod; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const { return x; } ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator%(const ModInt &p) const { return ModInt(0); } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt power(const ModInt p) const { return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using modint = ModInt; struct ModFac { public: vector f, i_f; int n; ModFac(int n_) { n = n_; f.resize(n + 1, 1); i_f.resize(n + 1, 1); for (int i = 0; i < n; i++) { f[i + 1] = f[i] * (modint)(i + 1); } i_f[n] = f[n].power(mod - 2); for (int i = n - 1; i >= 0; i--) { i_f[i] = i_f[i + 1] * (modint)(i + 1); } } ModFac(modint n_) { n = (int)n_; f.resize(n + 1, 1); i_f.resize(n + 1, 1); for (int i = 0; i < n; i++) { f[i + 1] = f[i] * (modint)(i + 1); } i_f[n] = f[n].power(mod - 2); for (int i = n - 1; i >= 0; i--) { i_f[i] = i_f[i + 1] * (modint)(i + 1); } } modint factorial(int x) { // cout << f.size() << endl; return f[x]; } modint inv_factorial(int x) { return i_f[x]; } modint comb(int m, int k) { if (m < 0 or k < 0) return 0; if (m < k) return 0; return f[m] * i_f[k] * i_f[m - k]; } }; ModFac MF(3000010); int N, M; void solve() { cin >> N >> M; modint C = 1; rep(i, 2 * N) { C *= (modint)(M + 2 * N - i); } C *= MF.inv_factorial(2 * N); modint ans = (modint)N * M / (modint)(2 * N + 1) * C; cout << ans << endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }