package main import ( "bufio" "errors" "fmt" "math" "os" "sort" "strconv" ) var sc = bufio.NewScanner(os.Stdin) var out = bufio.NewWriter(os.Stdout) func divide(x int) []int { m := make(map[int]struct{}) for i := 1; i*i <= x; i++ { if x%i == 0 { m[i] = struct{}{} m[x/i] = struct{}{} } } var res []int for k := range m { res = append(res, k) } sort.Ints(res) return res } func solve(a, b, c, x int) string { gcd := Gcd(Gcd(a, b), c) for _, v := range divide(x) { if gcd == v { return "Yes" } } return "No" } func main() { buf := make([]byte, 1024*1024) sc.Buffer(buf, bufio.MaxScanTokenSize) sc.Split(bufio.ScanWords) a, b, c := nextInt(), nextInt(), nextInt() x := nextInt() // a <= b <= c // b-a, c-b, c-a, c-b-a // x * c - y * b - z * a // 0<=x, 0<=y, 0<=z ans := solve(a, b, c, x) PrintString(ans) } func nextInt() int { sc.Scan() i, _ := strconv.Atoi(sc.Text()) return i } func nextIntSlice(n int) []int { s := make([]int, n) for i := range s { s[i] = nextInt() } return s } func nextFloat64() float64 { sc.Scan() f, _ := strconv.ParseFloat(sc.Text(), 64) return f } func nextString() string { sc.Scan() return sc.Text() } func PrintInt(x int) { defer out.Flush() fmt.Fprintln(out, x) } func PrintFloat64(x float64) { defer out.Flush() fmt.Fprintln(out, x) } func PrintString(x string) { defer out.Flush() fmt.Fprintln(out, x) } func PrintHorizonaly(x []int) { defer out.Flush() fmt.Fprintf(out, "%d", x[0]) for i := 1; i < len(x); i++ { fmt.Fprintf(out, " %d", x[i]) } fmt.Fprintln(out) } func PrintVertically(x []int) { defer out.Flush() for _, v := range x { fmt.Fprintln(out, v) } } func Abs(x int) int { if x < 0 { return -x } return x } func Min(x, y int) int { if x < y { return x } return y } func Max(x, y int) int { if x < y { return y } return x } func Floor(x, y int) int { return x / y } func Ceil(x, y int) int { return (x + y - 1) / y } func Sqrt(x int) int { x2 := int(math.Sqrt(float64(x))) - 1 for (x2+1)*(x2+1) <= x { x2++ } return x2 } func Gcd(x, y int) int { if x == 0 { return y } if y == 0 { return x } /* if x < y { x, y = y, x } */ return Gcd(y, x%y) } func Lcm(x, y int) int { // x*yのオーバーフロー対策のため先にGcdで割る // Gcd(x, y)はxの約数のため割り切れる ret := x / Gcd(x, y) ret *= y return ret } func Pow(x, y, p int) int { ret := 1 for y > 0 { if y%2 == 1 { ret = ret * x % p } y >>= 1 x = x * x % p } return ret } func Inv(x, p int) int { return Pow(x, p-2, p) } func Permutation(N, K int) int { v := 1 if 0 < K && K <= N { for i := 0; i < K; i++ { v *= (N - i) } } else if K > N { v = 0 } return v } func Factional(N int) int { return Permutation(N, N-1) } func Combination(N, K int) int { if K == 0 { return 1 } if K == 1 { return N } return Combination(N, K-1) * (N + 1 - K) / K } type Comb struct { n, p int fac []int // Factional(i) mod p finv []int // 1/Factional(i) mod p inv []int // 1/i mod p } func NewCombination(n, p int) *Comb { c := new(Comb) c.n = n c.p = p c.fac = make([]int, n+1) c.finv = make([]int, n+1) c.inv = make([]int, n+1) c.fac[0] = 1 c.fac[1] = 1 c.finv[0] = 1 c.finv[1] = 1 c.inv[1] = 1 for i := 2; i <= n; i++ { c.fac[i] = c.fac[i-1] * i % p c.inv[i] = p - c.inv[p%i]*(p/i)%p c.finv[i] = c.finv[i-1] * c.inv[i] % p } return c } func (c *Comb) Factional(x int) int { return c.fac[x] } func (c *Comb) Combination(n, k int) int { if n < k { return 0 } if n < 0 || k < 0 { return 0 } ret := c.fac[n] * c.finv[k] ret %= c.p ret *= c.finv[n-k] ret %= c.p return ret } //重複組み合わせ H func (c *Comb) DuplicateCombination(n, k int) int { return c.Combination(n+k-1, k) } func (c *Comb) Inv(x int) int { return c.inv[x] } func NextPermutation(x sort.Interface) bool { n := x.Len() - 1 if n < 1 { return false } j := n - 1 for ; !x.Less(j, j+1); j-- { if j == 0 { return false } } l := n for !x.Less(j, l) { l-- } x.Swap(j, l) for k, l := j+1, n; k < l; { x.Swap(k, l) k++ l-- } return true } func DivideSlice(A []int, K int) ([]int, []int, error) { if len(A) < K { return nil, nil, errors.New("") } return A[:K+1], A[K:], nil } type IntQueue struct { q []int } func NewIntQueue() *IntQueue { return new(IntQueue) } func (this *IntQueue) Push(v int) { this.q = append(this.q, v) } func (this *IntQueue) Pop() (int, error) { if this.Size() == 0 { return -1, errors.New("") } ret := this.q[0] this.q = this.q[1:] return ret, nil } func (this *IntQueue) Size() int { return len(this.q) } func (this *IntQueue) PrintQueue() { fmt.Println(this.q) } type Pos struct { X int Y int D int } type Queue struct { ps []Pos } func NewQueue() *Queue { return new(Queue) } func (this *Queue) Push(p Pos) { this.ps = append(this.ps, p) } func (this *Queue) Pop() *Pos { if len(this.ps) == 0 { return nil } p := this.ps[0] this.ps = this.ps[1:] return &p } func (this *Queue) Find(x, y int) bool { for _, v := range this.ps { if x == v.X && y == v.Y { return true } } return false } func (this *Queue) Size() int { return len(this.ps) } type UnionFind struct { par []int // parent numbers rank []int // height of tree size []int } func NewUnionFind(n int) *UnionFind { if n <= 0 { return nil } u := new(UnionFind) // for accessing index without minus 1 u.par = make([]int, n+1) u.rank = make([]int, n+1) u.size = make([]int, n+1) for i := 0; i <= n; i++ { u.par[i] = i u.rank[i] = 0 u.size[i] = 1 } return u } func (this *UnionFind) Find(x int) int { if this.par[x] == x { return x } else { // compress path // ex. Find(4) // 1 - 2 - 3 - 4 // 1 - 2 // L-3 // L 4 this.par[x] = this.Find(this.par[x]) return this.par[x] } } func (this *UnionFind) Size(x int) int { return this.size[this.Find(x)] } func (this *UnionFind) ExistSameUnion(x, y int) bool { return this.Find(x) == this.Find(y) } func (this *UnionFind) Unite(x, y int) { x = this.Find(x) y = this.Find(y) if x == y { return } // rank if this.rank[x] < this.rank[y] { //yがrootの木にxがrootの木を結合する this.par[x] = y this.size[y] += this.size[x] } else { // this.rank[x] >= this.rank[y] //xがrootの木にyがrootの木を結合する this.par[y] = x this.size[x] += this.size[y] if this.rank[x] == this.rank[y] { this.rank[x]++ } } } func PrintUnionFind(u *UnionFind) { // for debuging. not optimize. fmt.Println(u.par) fmt.Println(u.rank) fmt.Println(u.size) } type BinaryIndexedTree struct { n int nodes []int eval func(x1, x2 int) int } func NewBinaryIndexTree(n int, f func(x1, x2 int) int) *BinaryIndexedTree { bt := new(BinaryIndexedTree) // 1-indexed bt.n = n + 1 bt.nodes = make([]int, bt.n) bt.eval = f return bt } //i(0-indexed)をvに更新する func (bt *BinaryIndexedTree) Update(i, v int) { //bt内部では1-indexedなのでここでインクリメントする i++ for i < bt.n { bt.nodes[i] = bt.eval(bt.nodes[i], v) i += i & -1 } } //i(0-indexed)の値を取得する func (bt *BinaryIndexedTree) Query(i int) int { i++ res := 0 for i > 0 { res = bt.eval(bt.nodes[i], res) i -= i & -i } return res }