#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define rep(i, n) for (int i = 0; i < n; i++) #define per(i, n) for (int i = n - 1; i >= 0; i--) #define Rep(i, sta, n) for (int i = sta; i < n; i++) #define Per(i, sta, n) for (int i = n - 1; i >= sta; i--) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[8] = {1, -1, 0, 0, 1, 1, -1, -1}; int dy[8] = {0, 0, 1, -1, 1, -1, 1, -1}; template using max_heap = priority_queue; template using min_heap = priority_queue, greater<>>; template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template map factorize(T x) { map res; for (T i = 2; i * i <= x; i++) { while (x % i == 0) { x /= i; res[i]++; } } if (x != 1) res[x]++; return res; } template struct ModInt { long long x; static constexpr int MOD = mod; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const { return x; } ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator%(const ModInt &p) const { return ModInt(0); } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } ModInt power(const ModInt p) const { return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using modint = ModInt; int n; ll m; modint calc(int x) { vector> dp(n, vector(x + 1, 0)); vector> dpS(n, vector(x + 1, 0)); rep(j, x + 1) dp[0][j] = 1; rep(j, x + 1) dpS[0][j] = j + 1; rep(i, n - 1) { rep(j, x + 1) { dp[i + 1][j] = dpS[i][x - j]; dpS[i + 1][j] = dp[i + 1][j]; if (j >= 1) dpS[i + 1][j] += dpS[i + 1][j - 1]; } } // rep(i, n) { rep(j, x + 1) cout << i << " " << j << " " << dp[i][j] << endl; // } return dpS[n - 1][x]; } void solve() { cin >> n >> m; map f = factorize(m); modint ans = 1; for (auto p : f) { // cout << p.first << " " << p.second << endl; ans *= calc(p.second); } cout << ans << endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }