n = int(input()) m = int(input()) n //= 1000 n %= m from math import gcd def isprime(n): if n <= 1: return False elif n == 2: return True elif n % 2 == 0: return False A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022] s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in A: if a % n == 0: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def pollard(n): if n % 2 == 0: return 2 if isprime(n): return n f = lambda x:(x * x + 1) % n step = 0 while 1: step += 1 x = step y = f(x) while 1: p = gcd(y - x + n, n) if p == 0 or p == n: break if p != 1: return p x = f(x) y = f(f(y)) def primefact(n): if n == 1: return [] p = pollard(n) if p == n: return [p] left = primefact(p) right = primefact(n // p) left += right return sorted(left) def modinv(a, MOD): b = MOD u = 1 v = 0 while b: t = a // b a -= t * b u -= t * v a, b = b, a u, v = v, u u %= MOD return u def Garner(M, R): if not M: return 0 m_prod = M[0] C = R[0] for m, r in zip(M[1:], R[1:]): t = (r - C) * modinv(m_prod, m) % m C += t * m_prod m_prod *= m return C class Combination_Arbitary_sub: def __init__(self, p, pq): self.fact = [0] * (pq + 1) self.invfact = [0] * (pq + 1) self.fact[0] = 1 self.invfact[0] = 1 for i in range(1, pq + 1): if i % p == 0: self.fact[i] = self.fact[i - 1] else: self.fact[i] = self.fact[i - 1] * i % pq self.invfact[i] = modinv(self.fact[i], pq) class Combination_Arbitary: def __init__(self, MOD): self.MOD = MOD primes = primefact(MOD) self.le = len(set(primes)) self.p = sorted(set(primes)) self.q = [0] * self.le self.pq = [1] * self.le ind = -1 bef = -1 for p in primes: if p != bef: bef = p ind += 1 self.q[ind] += 1 self.pq[ind] *= p self.fac = [None] * self.le for i, (p_, pq_) in enumerate(zip(self.p, self.pq)): self.fac[i] = Combination_Arbitary_sub(p_, pq_) def C(self, n, k, p, q, pq, fac): z = n - k e0 = 0 u = n // p while u > 0: e0 += u u //= p u = k // p while u > 0: e0 -= u u //= p u = z // p while u > 0: e0 -= u u //= p em = 0 u = n // pq while u > 0: em += u u //= p u = k // pq while u > 0: em -= u u //= p u = z // pq while u > 0: em -= u u //= p ret = 1 while n > 0: ret *= fac.fact[n % pq] ret %= pq ret *= fac.invfact[k % pq] ret %= pq ret *= fac.invfact[z % pq] ret %= pq n //= p k //= p z //= p ret *= pow(p, e0, pq) ret %= pq if(not(p == 2 and q >= 3) and em & 1): ret = -ret % pq return ret def nCk(self, n, k): if n < k or k < 0: return 0 R = [0] * self.le for i in range(self.le): R[i] = self.C(n, k, self.p[i], self.q[i], self.pq[i], self.fac[i]) return Garner(self.pq, R) Comb = Combination_Arbitary(10 ** 9) print(Comb.nCk(m, n))