//https://judge.yosupo.jp/submission/19726 #include // #include using namespace std; #pragma region kyopro_template #define Nyaan_template #define pb push_back #define eb emplace_back #define fi first #define se second #define each(x, v) for (auto &x : v) #define all(v) (v).begin(), (v).end() #define sz(v) ((int)(v).size()) #define mem(a, val) memset(a, val, sizeof(a)) #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define inc(...) \ char __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define die(...) \ do { \ out(__VA_ARGS__); \ return; \ } while (0) using namespace std; using ll = long long; template using V = vector; using vi = vector; using vl = vector; using vvi = vector>; using vd = V; using vs = V; using vvl = vector>; using P = pair; using vp = vector

; using pii = pair; using vpi = vector>; constexpr int inf = 1001001001; constexpr long long infLL = (1LL << 61) - 1; template inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template ostream &operator<<(ostream &os, const pair &p) { os << p.first << " " << p.second; return os; } template istream &operator>>(istream &is, pair &p) { is >> p.first >> p.second; return is; } template ostream &operator<<(ostream &os, const vector &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template istream &operator>>(istream &is, vector &v) { for (auto &x : v) is >> x; return is; } void in() {} template void in(T &t, U &... u) { cin >> t; in(u...); } void out() { cout << "\n"; } template void out(const T &t, const U &... u) { cout << t; if (sizeof...(u)) cout << " "; out(u...); } #ifdef NyaanDebug #define trc(...) \ do { \ cerr << #__VA_ARGS__ << " = "; \ dbg_out(__VA_ARGS__); \ } while (0) #define trca(v, N) \ do { \ cerr << #v << " = "; \ array_out(v, N); \ } while (0) #define trcc(v) \ do { \ cerr << #v << " = {"; \ each(x, v) { cerr << " " << x << ","; } \ cerr << "}" << endl; \ } while (0) template void _cout(const T &c) { cerr << c; } void _cout(const int &c) { if (c == 1001001001) cerr << "inf"; else if (c == -1001001001) cerr << "-inf"; else cerr << c; } void _cout(const unsigned int &c) { if (c == 1001001001) cerr << "inf"; else cerr << c; } void _cout(const long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else if (c == -1001001001 || c == -((1LL << 61) - 1)) cerr << "-inf"; else cerr << c; } void _cout(const unsigned long long &c) { if (c == 1001001001 || c == (1LL << 61) - 1) cerr << "inf"; else cerr << c; } template void _cout(const pair &p) { cerr << "{ "; _cout(p.fi); cerr << ", "; _cout(p.se); cerr << " } "; } template void _cout(const vector &v) { int s = v.size(); cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } "; } template void _cout(const vector> &v) { cerr << "[ "; for (const auto &x : v) { cerr << endl; _cout(x); cerr << ", "; } cerr << endl << " ] "; } void dbg_out() { cerr << endl; } template void dbg_out(const T &t, const U &... u) { _cout(t); if (sizeof...(u)) cerr << ", "; dbg_out(u...); } template void array_out(const T &v, int s) { cerr << "{ "; for (int i = 0; i < s; i++) { cerr << (i ? ", " : ""); _cout(v[i]); } cerr << " } " << endl; } template void array_out(const T &v, int H, int W) { cerr << "[ "; for (int i = 0; i < H; i++) { cerr << (i ? ", " : ""); array_out(v[i], W); } cerr << " ] " << endl; } #else #define trc(...) #define trca(...) #define trcc(...) #endif inline int popcnt(unsigned long long a) { return __builtin_popcountll(a); } inline int lsb(unsigned long long a) { return __builtin_ctzll(a); } inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); } template inline int getbit(T a, int i) { return (a >> i) & 1; } template inline void setbit(T &a, int i) { a |= (1LL << i); } template inline void delbit(T &a, int i) { a &= ~(1LL << i); } template int lb(const vector &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template int ub(const vector &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } template int btw(T a, T x, T b) { return a <= x && x < b; } template T ceil(T a, U b) { return (a + b - 1) / b; } constexpr long long TEN(int n) { long long ret = 1, x = 10; while (n) { if (n & 1) ret *= x; x *= x; n >>= 1; } return ret; } template vector mkrui(const vector &v) { vector ret(v.size() + 1); for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; return ret; }; template vector mkuni(const vector &v) { vector ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template vector mkord(int N, F f) { vector ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template vector mkiota(int N) { vector ret(N); iota(begin(ret), end(ret), 0); return ret; } template vector mkinv(vector &v) { vector inv(v.size()); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; void solve(); int main() { solve(); } #pragma endregion using namespace std; namespace fastio { static constexpr int SZ = 1 << 17; char ibuf[SZ], obuf[SZ]; int pil = 0, pir = 0, por = 0; struct Pre { char num[40000]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i * 4 + j] = n % 10 + '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } inline void rd(char& c) { c = ibuf[pil++]; } template inline void rd(T& x) { if (pil + 32 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if (c == '-') { minus = 1; c = ibuf[pil++]; } x = 0; while (c >= '0') { x = x * 10 + (c & 15); c = ibuf[pil++]; } if (minus) x = -x; } inline void rd() {} template inline void rd(Head& head, Tail&... tail) { rd(head); rd(tail...); } inline void wt(char c) { obuf[por++] = c; } template inline void wt(T x) { if (por > SZ - 32) flush(); if (!x) { obuf[por++] = '0'; return; } if (x < 0) { obuf[por++] = '-'; x = -x; } int i = 12; char buf[16]; while (x >= 10000) { memcpy(buf + i, pre.num + (x % 10000) * 4, 4); x /= 10000; i -= 4; } int d = x < 100 ? (x < 10 ? 1 : 2) : (x < 1000 ? 3 : 4); memcpy(obuf + por, pre.num + x * 4 + 4 - d, d); por += d; memcpy(obuf + por, buf + i + 4, 12 - i); por += 12 - i; } inline void wt() {} template inline void wt(Head head, Tail... tail) { wt(head); wt(tail...); } template inline void wtn(T x){ wt(x, '\n'); } struct Dummy { Dummy() { atexit(flush); } } dummy; } // namespace fastio using fastio::rd; using fastio::wt; using fastio::wtn; // using namespace std; using namespace std; using namespace std; __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mullo_epu32(const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i my128_mulhi_epu32(const __m128i &a, const __m128i &b) { __m128i a13 = _mm_shuffle_epi32(a, 0xF5); __m128i b13 = _mm_shuffle_epi32(b, 0xF5); __m128i prod02 = _mm_mul_epu32(a, b); __m128i prod13 = _mm_mul_epu32(a13, b13); __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13), _mm_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_mul_128(const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) { return _mm_sub_epi32( _mm_add_epi32(my128_mulhi_epu32(a, b), m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1)); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_add_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("sse4.2"))) __attribute__((always_inline)) __m128i montgomery_sub_128(const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(a, b); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mullo_epu32(const __m256i &a, const __m256i &b) { return _mm256_mullo_epi32(a, b); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i my256_mulhi_epu32(const __m256i &a, const __m256i &b) { __m256i a13 = _mm256_shuffle_epi32(a, 0xF5); __m256i b13 = _mm256_shuffle_epi32(b, 0xF5); __m256i prod02 = _mm256_mul_epu32(a, b); __m256i prod13 = _mm256_mul_epu32(a13, b13); __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13), _mm256_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_mul_256(const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) { return _mm256_sub_epi32( _mm256_add_epi32(my256_mulhi_epu32(a, b), m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1)); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_add_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) __attribute__((always_inline)) __m256i montgomery_sub_256(const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(a, b); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } constexpr int SZ = 1 << 19; uint32_t buf1_[SZ * 2] __attribute__((aligned(64))); uint32_t buf2_[SZ * 2] __attribute__((aligned(64))); template struct NTT { static constexpr uint32_t get_pr() { uint32_t mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = pr, b = (mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % mod; a = a * a % mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++pr; } return pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; mint *buf1, *buf2; constexpr NTT() { setwy(level); buf1 = reinterpret_cast(::buf1_); buf2 = reinterpret_cast(::buf2_); } constexpr void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[0] = dy[0] = w[1] * w[1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } __attribute__((target("avx2"))) void ntt(mint *a, int n) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { if (v == 1) { mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { ww = xx * xx, wx = ww * xx; mint t0 = a[jh + 0], t1 = a[jh + 1] * xx; mint t2 = a[jh + 2] * ww, t3 = a[jh + 3] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[jh + 0] = t0p2 + t1p3, a[jh + 1] = t0p2 - t1p3; a[jh + 2] = t0m2 + t1m3, a[jh + 3] = t0m2 - t1m3; xx *= dw[__builtin_ctz((jh += 4))]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P2 = montgomery_add_128(T0, T2, m2, m0); const __m128i T1P3 = montgomery_add_128(T1, T3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, T2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(T1, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i WX = _mm_set1_epi32(wx.a); const __m128i XX = _mm_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i MT1 = montgomery_mul_128(T1, XX, r, m1); const __m128i MT2 = montgomery_mul_128(T2, WW, r, m1); const __m128i MT3 = montgomery_mul_128(T3, WX, r, m1); const __m128i T0P2 = montgomery_add_128(T0, MT2, m2, m0); const __m128i T1P3 = montgomery_add_128(MT1, MT3, m2, m0); const __m128i T0M2 = montgomery_sub_128(T0, MT2, m2, m0); const __m128i T1M3 = montgomery_mul_128( montgomery_sub_128(MT1, MT3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_sub_128(T0P2, T1P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_add_128(T0M2, T1M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, wx = one; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; int je = v; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P2 = montgomery_add_256(T0, T2, m2, m0); const __m256i T1P3 = montgomery_add_256(T1, T3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, T2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(T1, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } else { ww = xx * xx, wx = ww * xx; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i WX = _mm256_set1_epi32(wx.a); const __m256i XX = _mm256_set1_epi32(xx.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i MT1 = montgomery_mul_256(T1, XX, r, m1); const __m256i MT2 = montgomery_mul_256(T2, WW, r, m1); const __m256i MT3 = montgomery_mul_256(T3, WX, r, m1); const __m256i T0P2 = montgomery_add_256(T0, MT2, m2, m0); const __m256i T1P3 = montgomery_add_256(MT1, MT3, m2, m0); const __m256i T0M2 = montgomery_sub_256(T0, MT2, m2, m0); const __m256i T1M3 = montgomery_mul_256( montgomery_sub_256(MT1, MT3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_sub_256(T0P2, T1P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_add_256(T0M2, T1M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M2, T1M3, m2, m0)); } } xx *= dw[__builtin_ctz((jh += 4))]; } } u <<= 2; v >>= 2; } } __attribute__((target("avx2"))) void intt(mint *a, int n, int normalize = true) { int k = n ? __builtin_ctz(n) : 0; if (k == 0) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; if (normalize) { a[0] *= mint(2).inverse(); a[1] *= mint(2).inverse(); } return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { if (v == 1) { mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { ww = xx * xx, yy = xx * imag; mint t0 = a[jh + 0], t1 = a[jh + 1]; mint t2 = a[jh + 2], t3 = a[jh + 3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[jh + 0] = t0p1 + t2p3, a[jh + 2] = (t0p1 - t2p3) * ww; a[jh + 1] = t0m1 + t2m3, a[jh + 3] = (t0m1 - t2m3) * ww; xx *= dy[__builtin_ctz(jh += 4)]; } } else if (v == 4) { const __m128i m0 = _mm_set1_epi32(0); const __m128i m1 = _mm_set1_epi32(mod); const __m128i m2 = _mm_set1_epi32(mod + mod); const __m128i r = _mm_set1_epi32(mint::r); const __m128i Imag = _mm_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_sub_128(T0, T1, m2, m0); const __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), Imag, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j2), montgomery_sub_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128((__m128i *)(a + j3), montgomery_sub_128(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m128i WW = _mm_set1_epi32(ww.a); const __m128i XX = _mm_set1_epi32(xx.a); const __m128i YY = _mm_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 4, j1 += 4, j2 += 4, j3 += 4) { const __m128i T0 = _mm_loadu_si128((__m128i *)(a + j0)); const __m128i T1 = _mm_loadu_si128((__m128i *)(a + j1)); const __m128i T2 = _mm_loadu_si128((__m128i *)(a + j2)); const __m128i T3 = _mm_loadu_si128((__m128i *)(a + j3)); const __m128i T0P1 = montgomery_add_128(T0, T1, m2, m0); const __m128i T2P3 = montgomery_add_128(T2, T3, m2, m0); const __m128i T0M1 = montgomery_mul_128( montgomery_sub_128(T0, T1, m2, m0), XX, r, m1); __m128i T2M3 = montgomery_mul_128( montgomery_sub_128(T2, T3, m2, m0), YY, r, m1); _mm_storeu_si128((__m128i *)(a + j0), montgomery_add_128(T0P1, T2P3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j2), montgomery_mul_128(montgomery_sub_128(T0P1, T2P3, m2, m0), WW, r, m1)); _mm_storeu_si128((__m128i *)(a + j1), montgomery_add_128(T0M1, T2M3, m2, m0)); _mm_storeu_si128( (__m128i *)(a + j3), montgomery_mul_128(montgomery_sub_128(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i m2 = _mm256_set1_epi32(mod + mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i Imag = _mm256_set1_epi32(imag.a); mint ww = one, xx = one, yy = one; u <<= 2; for (int jh = 0; jh < u;) { if (jh == 0) { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_sub_256(T0, T1, m2, m0); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), Imag, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j2), montgomery_sub_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256((__m256i *)(a + j3), montgomery_sub_256(T0M1, T2M3, m2, m0)); } } else { ww = xx * xx, yy = xx * imag; const __m256i WW = _mm256_set1_epi32(ww.a); const __m256i XX = _mm256_set1_epi32(xx.a); const __m256i YY = _mm256_set1_epi32(yy.a); int j0 = jh * v; int j1 = j0 + v; int j2 = j1 + v; int j3 = j2 + v; int je = j1; for (; j0 < je; j0 += 8, j1 += 8, j2 += 8, j3 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); const __m256i T2 = _mm256_loadu_si256((__m256i *)(a + j2)); const __m256i T3 = _mm256_loadu_si256((__m256i *)(a + j3)); const __m256i T0P1 = montgomery_add_256(T0, T1, m2, m0); const __m256i T2P3 = montgomery_add_256(T2, T3, m2, m0); const __m256i T0M1 = montgomery_mul_256( montgomery_sub_256(T0, T1, m2, m0), XX, r, m1); const __m256i T2M3 = montgomery_mul_256( montgomery_sub_256(T2, T3, m2, m0), YY, r, m1); _mm256_storeu_si256((__m256i *)(a + j0), montgomery_add_256(T0P1, T2P3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j2), montgomery_mul_256(montgomery_sub_256(T0P1, T2P3, m2, m0), WW, r, m1)); _mm256_storeu_si256((__m256i *)(a + j1), montgomery_add_256(T0M1, T2M3, m2, m0)); _mm256_storeu_si256( (__m256i *)(a + j3), montgomery_mul_256(montgomery_sub_256(T0M1, T2M3, m2, m0), WW, r, m1)); } } xx *= dy[__builtin_ctz(jh += 4)]; } } u >>= 4; v <<= 2; } if (k & 1) { v = 1 << (k - 1); if (v < 8) { for (int j = 0; j < v; ++j) { mint ajv = a[j] - a[j + v]; a[j] += a[j + v]; a[j + v] = ajv; } } else { const __m256i m0 = _mm256_set1_epi32(0); const __m256i m2 = _mm256_set1_epi32(mod + mod); int j0 = 0; int j1 = v; for (; j0 < v; j0 += 8, j1 += 8) { const __m256i T0 = _mm256_loadu_si256((__m256i *)(a + j0)); const __m256i T1 = _mm256_loadu_si256((__m256i *)(a + j1)); __m256i naj = montgomery_add_256(T0, T1, m2, m0); __m256i najv = montgomery_sub_256(T0, T1, m2, m0); _mm256_storeu_si256((__m256i *)(a + j0), naj); _mm256_storeu_si256((__m256i *)(a + j1), najv); } } } if (normalize) { mint invn = mint(n).inverse(); for (int i = 0; i < n; i++) a[i] *= invn; } } __attribute__((target("avx2"))) void inplace_multiply( int l1, int l2, int zero_padding = true) { int l = l1 + l2 - 1; int M = 4; while (M < l) M <<= 1; if (zero_padding) { for (int i = l1; i < M; i++) buf1_[i] = 0; for (int i = l2; i < M; i++) buf2_[i] = 0; } const __m256i m0 = _mm256_set1_epi32(0); const __m256i m1 = _mm256_set1_epi32(mod); const __m256i r = _mm256_set1_epi32(mint::r); const __m256i N2 = _mm256_set1_epi32(mint::n2); for (int i = 0; i < l1; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(buf1_ + i), b); } for (int i = 0; i < l2; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i b = montgomery_mul_256(a, N2, r, m1); _mm256_storeu_si256((__m256i *)(buf2_ + i), b); } ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = _mm256_loadu_si256((__m256i *)(buf2_ + i)); __m256i c = montgomery_mul_256(a, b, r, m1); _mm256_storeu_si256((__m256i *)(buf1_ + i), c); } intt(buf1, M, false); const __m256i INVM = _mm256_set1_epi32((mint(M).inverse()).a); for (int i = 0; i < l; i += 8) { __m256i a = _mm256_loadu_si256((__m256i *)(buf1_ + i)); __m256i b = montgomery_mul_256(a, INVM, r, m1); __m256i c = my256_mulhi_epu32(my256_mullo_epu32(b, r), m1); __m256i d = _mm256_and_si256(_mm256_cmpgt_epi32(c, m0), m1); __m256i e = _mm256_sub_epi32(d, c); _mm256_storeu_si256((__m256i *)(buf1_ + i), e); } } void ntt(vector &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; ntt(buf1, M); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } void intt(vector &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M, true); for (int i = 0; i < M; i++) a[i].a = buf1[i].a; } vector multiply(const vector &a, const vector &b) { if (a.size() == 0 && b.size() == 0) return vector{}; int l = a.size() + b.size() - 1; if (min(a.size(), b.size()) <= 40) { vector s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int M = 4; while (M < l) M <<= 1; for (int i = 0; i < (int)a.size(); ++i) buf1[i].a = a[i].a; for (int i = (int)a.size(); i < M; ++i) buf1[i].a = 0; for (int i = 0; i < (int)b.size(); ++i) buf2[i].a = b[i].a; for (int i = (int)b.size(); i < M; ++i) buf2[i].a = 0; ntt(buf1, M); ntt(buf2, M); for (int i = 0; i < M; ++i) buf1[i].a = mint::reduce(uint64_t(buf1[i].a) * buf2[i].a); intt(buf1, M, false); vector s(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] = buf1[i] * invm; return s; } void ntt_doubling(vector &a) { int M = (int)a.size(); for (int i = 0; i < M; i++) buf1[i].a = a[i].a; intt(buf1, M); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) buf1[i] *= r, r *= zeta; ntt(buf1, M); a.resize(2 * M); for (int i = 0; i < M; i++) a[M + i].a = buf1[i].a; } };using namespace std; template struct FormalPowerSeries : vector { using vector::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { if (i * k > deg) return FPS(deg, mint(0)); mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template void *FormalPowerSeries::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ template void FormalPowerSeries::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT; } template FormalPowerSeries& FormalPowerSeries::operator*=( const FormalPowerSeries& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries(ret.begin(), ret.end()); } template void FormalPowerSeries::ntt() { set_fft(); static_cast*>(ntt_ptr)->ntt(*this); } template void FormalPowerSeries::intt() { set_fft(); static_cast*>(ntt_ptr)->intt(*this); } template void FormalPowerSeries::ntt_doubling() { set_fft(); static_cast*>(ntt_ptr)->ntt_doubling(*this); } template int FormalPowerSeries::ntt_pr() { set_fft(); return static_cast*>(ntt_ptr)->pr; } template FormalPowerSeries FormalPowerSeries::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template FormalPowerSeries FormalPowerSeries::exp(int deg) const { using fps = FormalPowerSeries; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min(this->size(), m)); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } using namespace std; template struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template vector FastMultiEval(const FormalPowerSeries &f, const vector &xs) { using fps = FormalPowerSeries; int s = xs.size(); int N = 1 << (32 - __builtin_clz((int)xs.size() - 1)); vector> buf(2 * N); for (int i = 0; i < N; i++) { mint n = mint{i < s ? -xs[i] : mint(0)}; buf[i + N] = fps{n, n}; } for (int i = N - 1; i > 0; i--) { trc(i); fps &f(buf[(i << 1) | 0]), &g(buf[(i << 1) | 1]); int n = f.size() / 2; buf[i].reserve(n * 4); buf[i].resize(n * 2); for (int j = 0; j < n * 1; j++) buf[i][j] = f[j] * g[j] + f[j] + g[j]; for (int j = n; j < n * 2; j++) buf[i][j] = f[j] * g[j] - f[j] - g[j]; if (i != 1) buf[i].ntt_doubling(); } // 写経 vector c(N * 2); int fs = f.size(); buf[1].intt(); buf[1].push_back(1); reverse(begin(buf[1]), end(buf[1])); c[1] = buf[1].inv(fs).rev() * f; c[1].erase(begin(c[1]), begin(c[1]) + fs - 1); c[1].resize(N, mint(0)); for (int i = 1; i < N; i++) { int len = c[i].size(); c[i].ntt(); for (int k = 0; k < 2; k++) { fps tmp = buf[i * 2 + 1 - k]; for (int j = 0; j < len; j++) { tmp[j] += j < (len >> 1) ? mint(1) : mint(-1); tmp[j] *= c[i][j]; } tmp.intt(); c[i * 2 + k] = fps{begin(tmp) + (len >> 1), end(tmp)}; } } vector ans(s); for (int i = 0; i < s; i++) ans[i] = c[N + i][0]; return ans; } template struct Comb{ vector dat,idat; Comb(int mx=3000000):dat(mx+1,1),idat(mx+1,1){ for(int i=1;i<=mx;++i){ dat[i]=dat[i-1]*i; } idat[mx]/=dat[mx]; for(int i=mx;i>0;--i){ idat[i-1]=idat[i]*i; } } T operator()(int n,int k){ if(n<0||k<0||n T Product(vector a){ int siz=1; while(siz res(siz*2-1,{1}); for(int i=0;i=0;--i){ res[i]=res[2*i+1]*res[2*i+2]; } return res[0]; } template mint lagrange(vector A,int N,mint T){ if(T.get()<=N){ return A[T.get()]; } vector Q_i(N+1,1); for(int i=1;i<=N;++i){ Q_i[0]*=-i; } for(int i=1;i<=N;++i){ Q_i[i]=Q_i[i-1]/(i-N-1)*i; } vector c(N+1); for(int i=0;i<=N;++i){ c[i]=A[i]/Q_i[i]; } mint prod=1; for(int i=0;i<=N;++i){ prod*=T-i; } mint res=0; for(int i=0;i<=N;++i){ res+=c[i]*prod/(T-i); } return res; } void solve() { using mint = LazyMontgomeryModInt<998244353>; using fps = FormalPowerSeries; Comb Cb; //f := sum[j=1,5000] cnt[j]*(M-x)^j //h(x) := sum[i=0,x] Cb(N-1+i,i)*f(i) は deg(f)+N 次多項式である //すべての k=0,1,...,deg(f)+N について h(k) がわかればよい //すべての k=0,1,...,deg(f)+N について g(k)=Cb(N-1+k,k)*f(k) がわかればよい //多点評価 long long N=200000,M=10000000000; rd(N, M); V cnt(5001); for(int i=0;i J(N); J[0]={1}; for(int i=1;i<=N-1;++i){ J[i]={1,mint(1)/i}; } auto P=Product(J)*f; vector Q(5000+N+1); for(int i=0;i<=5000+N;++i){ Q[i]=i; } auto O=FastMultiEval(P,Q); for(int i=1;i<=5000+N;++i){ O[i]+=O[i-1]; } cout<