class Fenwick_Tree: def __init__(self,N:int): self.N = N self.dat = [0]*(N+1) def inc(self,p:int): p += 1 while p <= self.N: self.dat[p] += 1 p += p&-p def dec(self,p:int): p += 1 while p <= self.N: self.dat[p] -= 1 p += p&-p def _sum(self,r:int): s = 0 while r: s += self.dat[r] r -= r&-r return s sum = lambda self,l,r:self._sum(r)-self._sum(l) class EulerTour: def __init__(self,G): self.N = len(G) self.begin = [0]*self.N self.end = [0]*self.N self.B_v = Fenwick_Tree(self.N*2) cnt = 0 f = 0 itr = [0]*self.N par = [0]*self.N par[f] = -1 while f != -1: if itr[f] == 0: self.begin[f] = cnt;cnt+=1 if itr[f] == len(G[f]): self.end[f] = cnt;cnt+=1 f = par[f] continue par[G[f][itr[f]]] = f itr[f]+=1 f = G[f][itr[f]-1] def add(self,p:int): self.B_v.inc(self.begin[p]) self.B_v.dec(self.end[p]) def query(self,p:int): return self.B_v.sum(0,self.begin[p]+1) def main(): N = int(input()) S = [input() for _ in range(N)] Q = int(input()) T = [0]*Q X = [0]*Q C = [""]*Q for i in range(Q): I = input().split() T[i] = int(I[0]);X[i] = int(I[1])-1 if T[i]==1:C[i] = I[2] path = [[0] for _ in range(N)] len_node = 1 nex = [[-1]*26] S2 = S[:] for i in range(Q): if T[i] == 1: S2[X[i]] += C[i] for i in range(N): now_node = 0 for c in S2[i]: z = ord(c)-97 if nex[now_node][z] == -1: nex[now_node][z] = len_node len_node += 1 nex.append([-1]*26) now_node = nex[now_node][z] path[i].append(now_node) V = len_node G = [[] for _ in range(V)] for i in range(V): for j in range(26): if nex[i][j] != -1: G[i].append(nex[i][j]) Eul = EulerTour(G) len_S = list(map(len,S)) for i in range(N): for j in range(len_S[i]):Eul.add(path[i][j+1]) for i in range(Q): if T[i] == 1: len_S[X[i]] += 1 Eul.add(path[X[i]][len_S[X[i]]]) else: print(Eul.query(path[X[i]][len_S[X[i]]])) if __name__ == "__main__": main()