import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 # md = 10**9+7 md = 998244353 import typing class CSR: def __init__( self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None: self.start = [0]*(n+1) self.elist = [0]*len(edges) for e in edges: self.start[e[0]+1] += 1 for i in range(1, n+1): self.start[i] += self.start[i-1] counter = self.start.copy() for e in edges: self.elist[counter[e[0]]] = e[1] counter[e[0]] += 1 class SCCGraph: def __init__(self, n: int) -> None: self._n = n self._edges: typing.List[typing.Tuple[int, int]] = [] def num_vertices(self) -> int: return self._n def add_edge(self, from_vertex: int, to_vertex: int) -> None: self._edges.append((from_vertex, to_vertex)) def scc_ids(self) -> typing.Tuple[int, typing.List[int]]: g = CSR(self._n, self._edges) now_ord = 0 group_num = 0 visited = [] low = [0]*self._n order = [-1]*self._n ids = [0]*self._n sys.setrecursionlimit(max(self._n+1000, sys.getrecursionlimit())) def dfs(v: int) -> None: nonlocal now_ord nonlocal group_num nonlocal visited nonlocal low nonlocal order nonlocal ids low[v] = now_ord order[v] = now_ord now_ord += 1 visited.append(v) for i in range(g.start[v], g.start[v+1]): to = g.elist[i] if order[to] == -1: dfs(to) low[v] = min(low[v], low[to]) else: low[v] = min(low[v], order[to]) if low[v] == order[v]: while True: u = visited[-1] visited.pop() order[u] = self._n ids[u] = group_num if u == v: break group_num += 1 for i in range(self._n): if order[i] == -1: dfs(i) for i in range(self._n): ids[i] = group_num-1-ids[i] return group_num, ids def scc(self) -> typing.List[typing.List[int]]: ids = self.scc_ids() group_num = ids[0] counts = [0]*group_num for x in ids[1]: counts[x] += 1 groups: typing.List[typing.List[int]] = [[] for _ in range(group_num)] for i in range(self._n): groups[ids[1][i]].append(i) return groups # https://atcoder.github.io/ac-library/production/document_ja/twosat.html class TwoSAT: def __init__(self, n: int = 0) -> None: self._n = n self._answer = [False]*n self._scc = SCCGraph(2*n) # def add_clause(self, i: int, f: bool, j: int, g: bool) -> None: assert 0 <= i < self._n assert 0 <= j < self._n self._scc.add_edge(2*i+(0 if f else 1), 2*j+(1 if g else 0)) self._scc.add_edge(2*j+(0 if g else 1), 2*i+(1 if f else 0)) def satisfiable(self) -> bool: scc_id = self._scc.scc_ids()[1] for i in range(self._n): if scc_id[2*i] == scc_id[2*i+1]: return False self._answer[i] = scc_id[2*i] < scc_id[2*i+1] return True def answer(self) -> typing.List[bool]: return self._answer n = II() ss = LI1() tt = LI1() uu = LI() ts = TwoSAT(n**2) for s, t, u in zip(ss, tt, uu): e, d = divmod(u, 2) for k in range(n): ts.add_clause(s*n+k, d ^ 1, k*n+t, e ^ 1) if ts.satisfiable(): aa = [[0]*n for _ in range(n)] cur = [] for a in ts.answer(): cur.append(a*1) if len(cur) == n: print(*cur) cur = [] else: print(-1)