#include using namespace std; #pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; const ll dy[8]={1,0,-1,0,1,1,-1,-1}; const ll dx[8]={0,1,0,-1,1,-1,1,-1}; template inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); } template inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); } template class binary_trie { struct node { int cnt; node *ch[2]; node() : cnt(0), ch{ nullptr, nullptr } {} }; node* add(node* t, U val, int b = B - 1) { if (!t) t = new node; t->cnt += 1; if (b < 0) return t; bool f = (val >> (U)b) & (U)1; t->ch[f] = add(t->ch[f], val, b - 1); return t; } node* sub(node* t, U val, int b = B - 1) { assert(t); t->cnt -= 1; if (t->cnt == 0) return nullptr; if (b < 0) return t; bool f = (val >> (U)b) & (U)1; t->ch[f] = sub(t->ch[f], val, b - 1); return t; } U get_min(node* t, U val, int b = B - 1) const { assert(t); if (b < 0) return 0; bool f = (val >> (U)b) & (U)1; f ^= !t->ch[f]; return get_min(t->ch[f], val, b - 1) | ((U)f << (U)b); } U get(node* t, int k, int b = B - 1) const { if (b < 0) return 0; int m = t->ch[0] ? t->ch[0]->cnt : 0; return k < m ? get(t->ch[0], k, b - 1) : get(t->ch[1], k - m, b - 1) | ((U)1 << (U)b); } int count_lower(node* t, U val, int b = B - 1) { if (!t || b < 0) return 0; bool f = (val >> (U)b) & (U)1; return (f && t->ch[0] ? t->ch[0]->cnt : 0) + count_lower(t->ch[f], val, b - 1); } node *root; public: binary_trie() : root(nullptr) {} int size() const { return root ? root->cnt : 0; } bool empty() const { return !root; } void insert(U val) { root = add(root, val); } void erase(U val) { root = sub(root, val); } U max_element(U bias = 0) const { return get_min(root, ~bias); } U min_element(U bias = 0) const { return get_min(root, bias); } int lower_bound(U val) { // return id return count_lower(root, val); } int upper_bound(U val) { // return id return count_lower(root, val + 1); } U operator[](int k) const { assert(0 <= k && k < size()); return get(root, k); } int count(U val) const { if (!root) return 0; node *t = root; for (int i = B - 1; i >= 0; i--) { t = t->ch[(val >> (U)i) & (U)1]; if (!t) return 0; } return t->cnt; } }; int main(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); ll n;cin >> n; vl level(n);rep(i,n)cin >> level[i]; vl solver(n); map points; vl num(100000); binary_trie order; ll t;cin >> t; ll base=1e6; ll subbase=2e5; while(t--){ string s;cin >> s; char x;cin >> x; if(x=='?'){ ll pts=points[s]; ll f=order.lower_bound(pts); cout << order.size()-f << endl; } else{ ll p=x-'A'; ll er=(points.count(s)? points[s]/base:0); if(points.count(s)){ order.erase(points[s]); } solver[p]++; er+=level[p]*50+level[p]*50*10/(8+2*solver[p]); ll cvt=er*base+subbase-num[er];num[er]++; points[s]=cvt;order.insert(cvt); } } }