#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; template using umap = std::unordered_map; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) std::begin(iterable), std::end(iterable) #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return out; } else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) { out << ' '; } return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t parse_i128(std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t parse_u128(std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = parse_i128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = parse_u128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return in; } else { return operator>>(in >> std::get(a), a); } } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num -1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template > = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template auto isize(const Iterable& iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template > = nullptr> auto generate_vector(int n, Gen generator) { std::vector v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template auto generate_range_vector(T n) { return generate_range_vector(0, n); } template void sort_unique_erase(std::vector& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { if (y <= x) return false; x = y; return true; } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num >= 0) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_{}; // ! code from here #include namespace suisen { class HeavyLightDecomposition { public: template using is_point_update_query = std::is_invocable; template using is_range_update_query = std::is_invocable; template using is_point_get_query = std::is_same, T>; template using is_range_fold_query = std::is_same, T>; using Graph = std::vector>; HeavyLightDecomposition() = default; HeavyLightDecomposition(Graph &g) : n(g.size()), visit(n), leave(n), head(n), ord(n), siz(n), par(n, -1), dep(n, 0) { for (int i = 0; i < n; ++i) if (par[i] < 0) dfs(g, i, -1); int time = 0; for (int i = 0; i < n; ++i) if (par[i] < 0) hld(g, i, -1, time); } int size() const { return n; } int lca(int u, int v) const { for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) return u; } } int la(int u, int k, int default_value = -1) const { if (k < 0) return default_value; while (u >= 0) { int h = head[u]; if (visit[u] - k >= visit[h]) return ord[visit[u] - k]; k -= visit[u] - visit[h] + 1; u = par[h]; } return default_value; } int move_to(int u, int v, int d, int default_value = -1) const { if (d < 0) return default_value; const int w = lca(u, v); int uw = dep[u] - dep[w]; if (d <= uw) return la(u, d); int vw = dep[v] - dep[w]; return d <= uw + vw ? la(v, (uw + vw) - d) : default_value; } int dist(int u, int v) const { return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } template , is_bin_op> = nullptr> T fold_path(int u, int v, T identity, F bin_op, Q fold_query, bool is_edge_query = false) const { T res = identity; for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) break; res = bin_op(fold_query(visit[head[v]], visit[v] + 1), res); } return bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res); } template < typename T, typename Q1, typename Q2, typename F, constraints_t, is_range_fold_query, is_bin_op> = nullptr > T fold_path_noncommutative(int u, int v, T identity, F bin_op, Q1 fold_query, Q2 fold_query_rev, bool is_edge_query = false) const { T res_u = identity, res_v = identity; // a := lca(u, v) // res = fold(u -> a) + fold(a -> v) while (head[u] != head[v]) { if (visit[u] < visit[v]) { // a -> v res_v = bin_op(fold_query(visit[head[v]], visit[v] + 1), res_v); v = par[head[v]]; } else { // u -> a res_u = bin_op(res_u, fold_query_rev(visit[head[u]], visit[u] + 1)); u = par[head[u]]; } } if (visit[u] < visit[v]) { // a = u res_v = bin_op(fold_query(visit[u] + is_edge_query, visit[v] + 1), res_v); } else { // a = v res_u = bin_op(res_u, fold_query_rev(visit[v] + is_edge_query, visit[u] + 1)); } return bin_op(res_u, res_v); } template > = nullptr> void update_path(int u, int v, Q update_query, bool is_edge_query = false) const { for (;; v = par[head[v]]) { if (visit[u] > visit[v]) std::swap(u, v); if (head[u] == head[v]) break; update_query(visit[head[v]], visit[v] + 1); } update_query(visit[u] + is_edge_query, visit[v] + 1); } template > = nullptr> T fold_subtree(int u, Q fold_query, bool is_edge_query = false) const { return fold_query(visit[u] + is_edge_query, leave[u]); } template > = nullptr> void update_subtree(int u, Q update_query, bool is_edge_query = false) const { update_query(visit[u] + is_edge_query, leave[u]); } template > = nullptr> T get_point(int u, Q get_query) const { return get_query(visit[u]); } template > = nullptr> void update_point(int u, Q update_query) const { update_query(visit[u]); } std::vector inv_ids() const { std::vector inv(n); for (int i = 0; i < n; ++i) inv[visit[i]] = i; return inv; } int get_visit_time(int u) const { return visit[u]; } int get_leave_time(int u) const { return leave[u]; } int get_head(int u) const { return head[u]; } int get_kth_visited(int k) const { return ord[k]; } int get_subtree_size(int u) const { return siz[u]; } int get_parent(int u) const { return par[u]; } int get_depth(int u) const { return dep[u]; } std::vector get_roots() const { std::vector res; for (int i = 0; i < n; ++i) if (par[i] < 0) res.push_back(i); return res; } private: int n; std::vector visit, leave, head, ord, siz, par, dep; int dfs(Graph &g, int u, int p) { par[u] = p; siz[u] = 1; int max_size = 0; for (int &v : g[u]) { if (v == p) continue; dep[v] = dep[u] + 1; siz[u] += dfs(g, v, u); if (max_size < siz[v]) { max_size = siz[v]; std::swap(g[u].front(), v); } } return siz[u]; } void hld(Graph &g, int u, int p, int &time) { visit[u] = time, ord[time] = u, ++time; head[u] = p >= 0 and g[p].front() == u ? head[p] : u; for (int v : g[u]) { if (v != p) hld(g, v, u, time); } leave[u] = time; } }; } // namespace suisen #include struct Trie { int id; map ch; Trie(int id) : id(id) {} ~Trie() { for (auto &[c, v] : ch) delete v; ch.clear(); } }; int main() { input(int, n); vector s(n); read(s); input(int, q); vector> qs(q); for (auto &[qt, x, c] : qs) { read(qt, x); --x; if (qt == 1) read(c); } vector t = s; for (auto &[qt, x, c] : qs) if (qt == 1) { t[x] += c; } Trie root(0); vector tries { &root }; int k = 1; for (const auto &x : t) { Trie *cur = &root; for (char c : x) { if (auto it = cur->ch.find(c); it == cur->ch.end()) { tries.push_back(cur = cur->ch[c] = new Trie(k++)); } else { cur = it->second; } } } vector> g(k); auto dfs = [&](auto dfs, Trie* cur) -> void { for (auto [c, nxt] : cur->ch) { g[cur->id].push_back(nxt->id); dfs(dfs, nxt); } }; dfs(dfs, &root); HeavyLightDecomposition hld(g); vector pos(n, 0); atcoder::fenwick_tree ft(k); hld.update_point(0, [&](int id) { ft.add(id, n); }); rep(i, n) { for (char c : s[i]) { pos[i] = tries[pos[i]]->ch[c]->id; hld.update_point(pos[i], [&](int id) { ft.add(id, 1); }); } } for (auto &[qt, x, c] : qs) { if (qt == 1) { pos[x] = tries[pos[x]]->ch[c]->id; hld.update_point(pos[x], [&](int id) { ft.add(id, 1); }); } else { int ans = hld.fold_path(0, pos[x], 0, std::plus(), [&](int l, int r) { return ft.sum(l, r); }); print(ans - n); } } return 0; }