#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; template using umap = std::unordered_map; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) std::begin(iterable), std::end(iterable) #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return out; } else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) { out << ' '; } return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t parse_i128(std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t parse_u128(std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = parse_i128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = parse_u128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) { return in; } else { return operator>>(in >> std::get(a), a); } } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template > = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template > = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num -1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template > = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template auto isize(const Iterable& iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template > = nullptr> auto generate_vector(int n, Gen generator) { std::vector v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template auto generate_range_vector(T n) { return generate_range_vector(0, n); } template void sort_unique_erase(std::vector& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { if (y <= x) return false; x = y; return true; } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num >= 0) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_{}; // ! code from here #include using mint = atcoder::modint998244353; std::istream& operator>>(std::istream& in, mint& a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint& a) { out << a.val(); return out; } #include #include #include namespace suisen { namespace default_operator { template auto zero() -> decltype(T { 0 }) { return T { 0 }; } template auto one() -> decltype(T { 1 }) { return T { 1 }; } template auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; } template auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; } template auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; } template auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; } template auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; } template auto neg(const T &x) -> decltype(-x) { return -x; } template auto inv(const T &x) -> decltype(one() / x) { return one() / x; } } // default_operator namespace default_operator_noref { template auto zero() -> decltype(T { 0 }) { return T { 0 }; } template auto one() -> decltype(T { 1 }) { return T { 1 }; } template auto add(T x, T y) -> decltype(x + y) { return x + y; } template auto sub(T x, T y) -> decltype(x - y) { return x - y; } template auto mul(T x, T y) -> decltype(x * y) { return x * y; } template auto div(T x, T y) -> decltype(x / y) { return x / y; } template auto mod(T x, T y) -> decltype(x % y) { return x % y; } template auto neg(T x) -> decltype(-x) { return -x; } template auto inv(T x) -> decltype(one() / x) { return one() / x; } } // default_operator } // namespace suisen namespace suisen { template < typename T, size_t N, size_t M, T(*_add)(T, T) = default_operator_noref::add, T(*_neg)(T) = default_operator_noref::neg, T(*_zero)() = default_operator_noref::zero, T(*_mul)(T, T) = default_operator_noref::mul, T(*_inv)(T) = default_operator_noref::inv, T(*_one)() = default_operator_noref::one > struct ArrayMatrix : public std::array, N> { #define MatrixType(N, M) ArrayMatrix using base_type = std::array, N>; using container_type = base_type; using row_type = std::array; using base_type::base_type; constexpr ArrayMatrix() : ArrayMatrix(_zero()) {} constexpr ArrayMatrix(T fill_value) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) (*this)[i][j] = fill_value; } constexpr ArrayMatrix(const container_type &c) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) (*this)[i][j] = c[i][j]; } constexpr std::pair shape() const { return { N, M }; } constexpr int row_size() const { return N; } constexpr int col_size() const { return M; } constexpr MatrixType(N, M) operator+() { return *this; } constexpr MatrixType(N, M) operator-() { ArrayMatrix res; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) res[i][j] = _add(res[i][j], _neg((*this)[i][j])); return res; } constexpr MatrixType(N, M)& operator+=(const MatrixType(N, M)& other) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) (*this)[i][j] = _add((*this)[i][j], other[i][j]); return *this; } constexpr MatrixType(N, M)& operator-=(const MatrixType(N, M)& other) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) (*this)[i][j] = _add((*this)[i][j], _neg(other[i][j])); return *this; } template constexpr MatrixType(N, M)& operator*=(const MatrixType(M, K)& other) { return *this = *this * other; } constexpr MatrixType(N, M)& operator*=(const T& val) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) (*this)[i][j] = _mul((*this)[i][j], val); return *this; } constexpr MatrixType(N, M)& operator/=(const T& val) { return *this *= _inv(val); } constexpr friend MatrixType(N, M) operator+(const MatrixType(N, M)& lhs, const MatrixType(N, M)& rhs) { return MatrixType(N, M)(lhs) += rhs; } constexpr friend MatrixType(N, M) operator-(const MatrixType(N, M)& lhs, const MatrixType(N, M)& rhs) { return MatrixType(N, M)(lhs) -= rhs; } template constexpr friend MatrixType(N, K) operator*(const MatrixType(N, M)& lhs, const MatrixType(M, K)& rhs) { MatrixType(N, K) res; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) for (size_t k = 0; k < K; ++k) { res[i][k] = _add(res[i][k], _mul(lhs[i][j], rhs[j][k])); } return res; } constexpr friend MatrixType(N, M) operator*(const MatrixType(N, M)& A, const T& val) { MatrixType(N, M) res; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) res[i][j] = _mul(A[i][j], val); return res; } constexpr friend MatrixType(N, M) operator*(const T& val, const MatrixType(N, M)& A) { MatrixType(N, M) res; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) res[i][j] = _mul(val, A[i][j]); return res; } constexpr friend MatrixType(N, M) operator/(const MatrixType(N, M)& A, const T& val) { return MatrixType(N, M)(A) /= val; } constexpr std::array operator*(const std::array& x) const { std::array b; b.fill(_zero()); for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) b[i] = _add(b[i], _mul((*this)[i][j], x[j])); return b; } #undef MatrixType }; template < typename T, size_t N, T(*_add)(T, T) = default_operator_noref::add, T(*_neg)(T) = default_operator_noref::neg, T(*_zero)() = default_operator_noref::zero, T(*_mul)(T, T) = default_operator_noref::mul, T(*_inv)(T) = default_operator_noref::inv, T(*_one)() = default_operator_noref::one > class SquareArrayMatrix : public ArrayMatrix { private: enum Operator { Add, Mul }; public: #define MatrixType(N) SquareArrayMatrix using base_type = ArrayMatrix; using container_type = typename base_type::container_type; using row_type = typename base_type::row_type; using base_type::base_type; static SquareArrayMatrix e0() { return SquareArrayMatrix(Operator::Add); } static SquareArrayMatrix e1() { return SquareArrayMatrix(Operator::Mul); } static constexpr std::optional inv(const SquareArrayMatrix& A) { std::array, N> data; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { data[i][j] = A[i][j]; data[i][N + j] = i == j ? _one() : _zero(); } } for (size_t i = 0; i < N; ++i) { int pivot = -1; for (size_t k = i; k < N; ++k) if (data[k][i] != _zero()) { pivot = k; break; } if (pivot < 0) return std::nullopt; data[i].swap(data[pivot]); T coef = _inv(data[i][i]); for (size_t j = i; j < 2 * N; ++j) data[i][j] = _mul(data[i][j], coef); for (size_t k = 0; k < N; ++k) if (k != i and data[k][i] != _zero()) { T c = data[k][i]; for (size_t j = i; j < 2 * N; ++j) data[k][j] = _add(data[k][j], _neg(_mul(c, data[i][j]))); } } SquareArrayMatrix res; for (size_t i = 0; i < N; ++i) std::copy(data[i].begin(), data[i].begin() + N, res[i].begin()); return res; } static constexpr T det(SquareArrayMatrix&& A) { T det_inv = _one(); for (size_t i = 0; i < N; ++i) { int pivot = -1; for (size_t k = i; k < N; ++k) if (A[k][i] != _zero()) { pivot = k; break; } if (pivot < 0) return _zero(); A[i].swap(A[pivot]); if (pivot != i) det_inv = _mul(det_inv, _neg(_one())); T coef = _inv(A[i][i]); for (size_t j = i; j < N; ++j) A[i][j] = _mul(A[i][j], coef); det_inv = _mul(det_inv, coef); for (size_t k = i + 1; k < N; ++k) if (A[k][i] != _zero()) { T c = A[k][i]; for (size_t j = i; j < N; ++j) A[k][j] = _add(A[k][j], _neg(_mul(c, A[i][j]))); } } return _inv(det_inv); } static constexpr T det(const SquareArrayMatrix& A) { return det(SquareArrayMatrix(A)); } constexpr SquareArrayMatrix inv() const { return *inv(*this); } constexpr T det() const { return det(*this); } constexpr friend SquareArrayMatrix operator+(const SquareArrayMatrix& A, const SquareArrayMatrix& B) { auto res = *static_cast(&A) + *static_cast(&B); return *static_cast(&res); } constexpr SquareArrayMatrix& operator+=(const SquareArrayMatrix& B) { return *static_cast(&(*static_cast(this) += *static_cast(&B))); } constexpr friend SquareArrayMatrix operator-(const SquareArrayMatrix& A, const SquareArrayMatrix& B) { auto res = *static_cast(&A) - *static_cast(&B); return *static_cast(&res); } constexpr SquareArrayMatrix& operator-=(const SquareArrayMatrix& B) { return *static_cast(&(*static_cast(this) -= *static_cast(&B))); } constexpr friend SquareArrayMatrix operator*(const SquareArrayMatrix& A, const SquareArrayMatrix& B) { auto res = *static_cast(&A) * *static_cast(&B); return *static_cast(&res); } constexpr SquareArrayMatrix& operator*=(const SquareArrayMatrix& B) { return *static_cast(&(*static_cast(this) *= *static_cast(&B))); } constexpr friend SquareArrayMatrix operator*(const SquareArrayMatrix& A, const T& x) { auto res = *static_cast(&A) * x; return *static_cast(&res); } constexpr friend SquareArrayMatrix operator*(const T& x, const SquareArrayMatrix& A) { auto res = x * *static_cast(&A); return *static_cast(&res); } constexpr SquareArrayMatrix& operator*=(const T& x) { return *static_cast(&(*static_cast(this) *= x)); } constexpr SquareArrayMatrix& operator/=(const SquareArrayMatrix& other) { return *this *= other.inv(); } constexpr SquareArrayMatrix operator/ (const SquareArrayMatrix& other) const { return SquareArrayMatrix(*this) *= other.inv(); } constexpr SquareArrayMatrix pow(long long b) const { assert(b >= 0); SquareArrayMatrix res(e1()), p(*this); for (; b; b >>= 1) { if (b & 1) res *= p; p *= p; } return res; } private: SquareArrayMatrix(Operator op) : base_type() { if (op == Operator::Mul) for (size_t i = 0; i < N; ++i) (*this)[i][i] = _one(); } #undef MatrixType }; } // namespace suisen using Matrix = SquareArrayMatrix; array T { Matrix {{ 1, 0, 0, 0, 1, 0, 0, 0, 1 }}, Matrix {{ 0, 0, 1, 1, 0, 0, 0, 1, 0 }}, Matrix {{ 0, 1, 0, 0, 0, 1, 1, 0, 0 }}, }; Matrix Q {{ 4, 3, 3, 3, 4, 3, 3, 3, 4 }}; int main() { input(int, n); input(string, s); vector S(n + 1); rrep(i, n) { S[i] = (s[i] == '?' ? Q : T[(s[i] - '0') % 3]) * (S[i + 1] + Matrix::e1()); } print(accumulate(all(S), Matrix::e0())[0][0]); return 0; }