import sys input = sys.stdin.buffer.readline sys.setrecursionlimit(10 ** 7) U = 2 * 10 ** 4 + 10 class FenwickTree(object): def __init__(self, n): self.n = n self.log = n.bit_length() self.data = [0] * n def __sum(self, r): s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s def add(self, p, x): """ a[p] += xを行う""" p += 1 while p <= self.n: self.data[p - 1] += x p += p & -p def sum(self, l, r): """a[l] + a[l+1] + .. + a[r-1]を返す""" return self.__sum(r) - self.__sum(l) def lower_bound(self, x): """a[0] + a[1] + .. a[i] >= x となる最小のiを返す""" if x <= 0: return -1 i = 0 k = 1 << self.log while k: if i + k <= self.n and self.data[i + k - 1] < x: x -= self.data[i + k - 1] i += k k >>= 1 return i def __repr__(self): res = [self.sum(i, i+1) for i in range(self.n)] return " ".join(map(str, res)) def solve(N, X, Y): height = [0] * (U + 1) height[0] = U bit = FenwickTree(U+1) bit.add(0, 1) bit.add(U, 1) res = [] for x, y in zip(X, Y): c = bit.sum(0, x) yr = height[bit.lower_bound(c + 1)] if yr >= y: res.append(0) continue point = c area = 0 while point > 1: xl = bit.lower_bound(point) yl = height[xl] if yl > y: break xll = bit.lower_bound(point-1) area -= (xl - xll) * (yl - yr) point -= 1 xl = bit.lower_bound(point) area += (x - xl) * (y - yr) res.append(area) height[x] = y bit.add(x, y) return res N = int(input()) data = tuple(tuple(map(lambda x: abs(int(x)), input().split())) for _ in range(N)) x, y, xx, yy = zip(*data) a1 = solve(N, x, y) a2 = solve(N, x, yy) a3 = solve(N, xx, y) a4 = solve(N, xx, yy) for i in range(N): print(a1[i] + a2[i] + a3[i] + a4[i])