#include //#include using namespace std; //using namespace atcoder; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define repab(i, a, b) for (int i = (int)(a); i <= (int)(b); i++) #define repabc(i, a, b, c) for (int i = (int)(a); i <= (int)(b); i += c) #define rrep(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rrepab(i, a, b) for (int i = (int)(b); i >= (int)(a); i--) #define rrepabc(i, a, b, c) for (int i = (int)(b); i >= (int)(a); i-=c) #define printl(...) cerr << "LINE=" << __LINE__ << " "; print(__VA_ARGS__) void in_print() {} template void in_print(Head&& head, Tail&&... tail) { cerr << "," << head; in_print(forward(tail)...); } void print() {} template void print(Head&& head, Tail&&... tail) { cerr << head; in_print(forward(tail)...); cerr << endl; } unsigned int randxor() { static unsigned int x=123456789,y=362436069,z=521288629,w=88675123; unsigned int t; t=(x^(x<<11));x=y;y=z;z=w; return( w=(w^(w>>19))^(t^(t>>8)) ); } //char grid[8][8]; //static const int dx[] = {0,-1,0,1,1,-1,-1,1}; //static const int dy[] = {-1,0,1,0,1,1,-1,-1}; //static const char dir[] = {'L','U','R','D'}; auto start_time = chrono::system_clock::now(); auto end_time = chrono::system_clock::now(); //if (chrono::duration_cast(end_time - start_time).count() > 500) int N = 100; int M = 8; int planet[100][2]; int station[8][2]; int alpha = 5; typedef vector vi; typedef vector> vvi; void load_data() { cin >> N >> M; rep(i, N) rep(j, 2) cin >> planet[i][j]; rep(i, 8) rep(j, 2) station[i][j] = i*100; } double calc_score(vvi st, vvi &ans) { long long energy = 0; int x = planet[0][0]; int y = planet[0][1]; int nowt = 1; rep(i, (int)ans.size()) { if (ans[i][0] == 1) { if (nowt == 1) energy += 25 * ((x-planet[ans[i][1]][0])*(x-planet[ans[i][1]][0]) + (y-planet[ans[i][1]][1])*(y-planet[ans[i][1]][1])); else energy += 5 * ((x-planet[ans[i][1]][0])*(x-planet[ans[i][1]][0]) + (y-planet[ans[i][1]][1])*(y-planet[ans[i][1]][1])); x = planet[ans[i][1]][0]; y = planet[ans[i][1]][1]; } else { if (nowt == 2) energy += ((x-st[ans[i][1]][0])*(x-st[ans[i][1]][0]) + (y-st[ans[i][1]][1])*(y-st[ans[i][1]][1])); else energy += 5 * ((x-st[ans[i][1]][0])*(x-st[ans[i][1]][0]) + (y-st[ans[i][1]][1])*(y-st[ans[i][1]][1])); x = st[ans[i][1]][0]; y = st[ans[i][1]][1]; } nowt = ans[i][0]; } return round(1000000000.0/(1000.0 + sqrt(energy))); } void make_first_ans(vvi &fans) { vi dd = {1, 0}; fans.push_back(dd); repab(i, 1, N-1) { vi dd = {1, i}; fans.push_back(dd); } vi dc = {1, 0}; fans.push_back(dc); } void print_ans(vvi &st, vvi &ans) { rep(i, 8) cout << st[i][0] << " " << st[i][1] << endl; cout << ans.size() << endl; rep(i, (int)ans.size()) cout << ans[i][0] << " " << ans[i][1]+1 << endl; } struct STATE { double score; vvi robo; vvi move; vi cnt; }; void simulated_annealing() { double start_tmp = 150; double end_tmp = 1; int sa_end_time = 950; double fsc = 0.0; vvi frobo; rep(i, 8) frobo.push_back({station[i][0], station[i][1]}); vvi fmove; make_first_ans(fmove); vi fcnt; rep(i, N) { if (i == 0) fcnt.push_back(2); else fcnt.push_back(1); } STATE state = {fsc, frobo, fmove, fcnt}; int cnt = 0; while (true) { if (cnt % 100 == 0) { end_time = chrono::system_clock::now(); if (chrono::duration_cast(end_time - start_time).count() > sa_end_time) break; } cnt += 1; STATE nxt = state; int opt = randxor() % 5; //int opt = 3; if (opt == 0) { int posi = randxor() % 8; nxt.robo[posi][0] += -min(50, nxt.robo[posi][0]) + (randxor() % max(1, min(50, nxt.robo[posi][0])+min(50, 1000-nxt.robo[posi][0]))); nxt.robo[posi][1] += -min(50, nxt.robo[posi][1]) + (randxor() % max(1, min(50, nxt.robo[posi][1])+min(50, 1000-nxt.robo[posi][1]))); double nextscore = calc_score(nxt.robo, nxt.move); nxt.score = nextscore; double nowscore = state.score; double temp = start_tmp + (end_tmp - start_tmp) * (chrono::duration_cast(end_time - start_time).count()) / sa_end_time; double prob = exp((nextscore - nowscore)/temp); if (prob > (randxor() % 10000)/10000.0) { state = nxt; } } else if (opt == 1) { int posi = 1 + randxor() % (max(1, (int)nxt.move.size()-2)); int tp = randxor() % 10; if (tp < 3) { int ad = randxor() % 8; nxt.move.insert(nxt.move.begin() + posi, {2, ad}); } else { int ad = randxor() % 100; nxt.move.insert(nxt.move.begin() + posi, {1, ad}); nxt.cnt[ad] += 1; } double nextscore = calc_score(nxt.robo, nxt.move); nxt.score = nextscore; double nowscore = state.score; double temp = start_tmp + (end_tmp - start_tmp) * (chrono::duration_cast(end_time - start_time).count()) / sa_end_time; double prob = exp((nextscore - nowscore)/temp); if (prob > (randxor() % 10000)/10000.0) { state = nxt; } } else if ( opt == 2) { int posi = 1 + (randxor() % (max(1, (int)nxt.move.size() - 2))); if (nxt.move[posi][0] == 1) { if (nxt.cnt[nxt.move[posi][1]] > 1) { nxt.cnt[nxt.move[posi][1]] -= 1; nxt.move.erase(nxt.move.begin() + posi); } } else nxt.move.erase(nxt.move.begin() + posi); double nextscore = calc_score(nxt.robo, nxt.move); nxt.score = nextscore; double nowscore = state.score; double temp = start_tmp + (end_tmp - start_tmp) * (chrono::duration_cast(end_time - start_time).count()) / sa_end_time; double prob = exp((nextscore - nowscore)/temp); if (prob > (randxor() % 10000)/10000.0) { state = nxt; } } else if (opt == 3) { int posi = 1 + (randxor() % max(1, (int)nxt.move.size() - 3)); swap(nxt.move[posi], nxt.move[posi+1]); double nextscore = calc_score(nxt.robo, nxt.move); nxt.score = nextscore; double nowscore = state.score; double temp = start_tmp + (end_tmp - start_tmp) * (chrono::duration_cast(end_time - start_time).count()) / sa_end_time; double prob = exp((nextscore - nowscore)/temp); if (prob > (randxor() % 10000)/10000.0) { state = nxt; } } else if (opt == 4) { int p1 = 1 + (randxor() % max(1, (int)nxt.move.size() - 3)); int p2 = 1 + (randxor() % max(1, (int)nxt.move.size() - 2)); swap(nxt.move[p1], nxt.move[p2]); double nextscore = calc_score(nxt.robo, nxt.move); nxt.score = nextscore; double nowscore = state.score; double temp = start_tmp + (end_tmp - start_tmp) * (chrono::duration_cast(end_time - start_time).count()) / sa_end_time; double prob = exp((nextscore - nowscore)/temp); if (prob > (randxor() % 10000)/10000.0) { state = nxt; } } } print("cnt=", cnt); print(state.score); print_ans(state.robo, state.move); } int main() { load_data(); simulated_annealing(); }