void main() { runSolver(); } // ---------------------------------------------- enum long ALPHA = 5; enum ALPHAS = [0, 0, ALPHA^^2, ALPHA, 1]; alias Vector = Vector2!long; struct Spot { int type, id; Vector location; long energy(Spot other) { auto k = ALPHAS[type + other.type]; return location.norm(other.location) * k; } string toString() { return "%s %s".format(type, id); } } enum long BOUNDARY = 10 ^^ 3; Vector center(Vector[] arr) { long x = arr.map!"a.x".sum / arr.length; long y = arr.map!"a.y".sum / arr.length; return Vector(x, y); } Vector center(Spot[] arr) { long x = arr.map!"a.location.x".sum / arr.length; long y = arr.map!"a.location.y".sum / arr.length; return Vector(x, y); } auto degComp(Spot as, Spot bs, Vector center) { auto a = as.location; auto b = bs.location; auto d1 = atan2(a.y.to!real - center.y.to!real, a.x.to!real - center.x.to!real); auto d2 = atan2(b.y.to!real - center.y.to!real, b.x.to!real - center.x.to!real); return d1 < d2; } void problem() { auto N = scan!int; auto M = scan!int; auto P = N.iota.map!(_ => Vector(scan!long, scan!long)).array; auto rnd = Xorshift(unpredictableSeed); auto solve() { auto allCenter = center(P); auto targets = P.enumerate(1).map!(p => Spot(1, p[0], p[1])).array; targets.sort!((a, b) => degComp(a, b, allCenter)); auto startIndex = targets.countUntil!(t => t.id == 1); targets = targets[startIndex..$] ~ targets[0..startIndex]; auto stationIndicies = 0 ~ iota(1, M + 1).map!(m => N * m / M).array; auto stations = M.iota.map!(i => Spot(2, i + 1, center(targets[stationIndicies[i]..stationIndicies[i + 1]]))); Spot[] routes; routes ~= targets[0]; foreach(si; 0..M) { foreach(i; stationIndicies[si]..stationIndicies[si + 1]) { auto d1 = routes[$ - 1].energy(stations[si]) + stations[si].energy(targets[i]); auto d2 = routes[$ - 1].energy(targets[i]); if (d1 < d2) { routes ~= stations[si]; routes ~= targets[i]; } else { routes ~= targets[i]; } } routes ~= stations[si]; } routes ~= targets[0]; auto ri = iota(1, routes.length - 1).array; foreach(i; 0..10^^6) { auto a = ri.choice(rnd); auto b = ri.choice(rnd); auto efa = routes[a - 1].energy(routes[a]) + routes[a].energy(routes[a + 1]); auto efb = routes[b - 1].energy(routes[b]) + routes[b].energy(routes[b + 1]); auto eta = routes[a - 1].energy(routes[b]) + routes[b].energy(routes[a + 1]); auto etb = routes[b - 1].energy(routes[a]) + routes[a].energy(routes[b + 1]); if (efa + efb > eta + etb) swap(routes[a], routes[b]); } Spot[] filtered; filtered ~= routes[0]; routes = routes.uniq.array; foreach(i; 1..routes.length - 1) { if (routes[i - 1..i + 1].all!(s => s.type == 2)) { if (routes[i - 1].id == routes[i + 1].id) continue; } filtered ~= routes[i]; } filtered ~= routes[$ - 1]; routes = filtered; long energy; foreach(i; 0..routes.length - 1) { energy += routes[i].energy(routes[i + 1]); } stderr.writeln(10L^^9 / (1000 + energy.to!real.sqrt)); string[] ans; foreach(s; stations) ans ~= s.location.toString; ans ~= routes.length.to!string; ans ~= routes.map!"a.toString".array; return ans; } outputForAtCoder(&solve); } // ---------------------------------------------- import std.stdio, std.conv, std.array, std.string, std.algorithm, std.container, std.range, std.math, std.typecons, std.numeric, std.traits, std.functional, std.bigint, std.datetime.stopwatch, core.time, core.bitop, std.random; string scan(){ static string[] ss; while(!ss.length) ss = readln.chomp.split; string res = ss[0]; ss.popFront; return res; } T scan(T)(){ return scan.to!T; } T[] scan(T)(long n){ return n.iota.map!(i => scan!T()).array; } void deb(T ...)(T t){ debug { write("#"); writeln(t); }} T[] divisors(T)(T n) { T[] ret; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { ret ~= i; if (i * i != n) ret ~= n / i; } } return ret.sort.array; } bool chmin(T)(ref T a, T b) { if (b < a) { a = b; return true; } else return false; } bool chmax(T)(ref T a, T b) { if (b > a) { a = b; return true; } else return false; } string charSort(alias S = "a < b")(string s) { return (cast(char[])((cast(byte[])s).sort!S.array)).to!string; } ulong comb(ulong a, ulong b) { if (b == 0) {return 1;}else{return comb(a - 1, b - 1) * a / b;}} string toAnswerString(R)(R r) { return r.map!"a.to!string".joiner(" ").array.to!string; } void outputForAtCoder(T)(T delegate() fn) { static if (is(T == float) || is(T == double) || is(T == real)) "%.16f".writefln(fn()); else static if (is(T == void)) fn(); else static if (is(T == string)) fn().writeln; else static if (isInputRange!T) { static if (!is(string == ElementType!T) && isInputRange!(ElementType!T)) foreach(r; fn()) r.toAnswerString.writeln; else foreach(r; fn()) r.writeln; } else fn().writeln; } void runSolver() { enum BORDER = "#=================================="; debug { BORDER.writeln; while(true) { "#<<< Process time: %s >>>".writefln(benchmark!problem(1)); BORDER.writeln; } } else problem(); } enum YESNO = [true: "Yes", false: "No"]; // ----------------------------------------------- struct Vector2(T) { T x, y; Vector2 add(Vector2 other) { return Vector2(x + other.x, y + other.y ); } Vector2 opAdd(Vector2 other) { return add(other); } Vector2 sub(Vector2 other) { return Vector2(x - other.x, y - other.y ); } Vector2 opSub(Vector2 other) { return sub(other); } T norm(Vector2 other) {return (x - other.x)*(x - other.x) + (y - other.y)*(y - other.y); } T dot(Vector2 other) {return x*other.y - y*other.x; } Vector2 normalize() {if (x == 0 || y == 0) return Vector2(x == 0 ? 0 : x/x.abs, y == 0 ? 0 : y/y.abs);const gcd = x.abs.gcd(y.abs);return Vector2(x / gcd, y / gcd);} string toString() { return "%s %s".format(x, y); } }