#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> // デバッグ用マクロ:https://naskya.net/post/0002/ #ifdef LOCAL #include <debug_print.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using namespace std; using namespace chrono; using ll = long long; using vi = vector<int>; using vl = vector<long long>; using vs = vector<string>; using vc = vector<char>; using vb = vector<bool>; using vpii = vector<pair<int, int>>; using vpll = vector<pair<long long, long long>>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; using vvc = vector<vector<char>>; using vvb = vector<vector<bool>>; using vvvi = vector<vector<vector<int>>>; using pii = pair<int, int>; // #include <atcoder/all> // using namespace atcoder; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define all(x) (x).begin(), (x).end() // #define MAX 10000 #define INFTY (1 << 30) // 浮動小数点の誤差を考慮した等式 #define EPS (1e-10) #define equal(a, b) (fabs((a) - (b)) < EPS) template <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); } template <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); } // 焼きなまし法の参考にしたページ // https://shindannin.hatenadiary.com/entry/2021/03/06/115415 // 0以上UINT_MAX(0xffffffff)以下の整数をとる乱数 xorshift // https://ja.wikipedia.org/wiki/Xorshift static uint32_t randXor() { static uint32_t x = 123456789; static uint32_t y = 362436069; static uint32_t z = 521288629; static uint32_t w = 88675123; uint32_t t; t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } // 0以上1未満の小数をとる乱数 static double rand01() { return (randXor() + 0.5) * (1.0 / UINT_MAX); } int N, M; vi a, b; vpii cd; // α const int A = 5; const int MAP_SIZE = 1000; // ワーシャルフロイドで求めた各惑星間の最短コスト vvl G; // 解説の「貪欲による解法2」を採用 // https://yukicoder.me/problems/no/5007/editorial vi terryInit() { const ll INF = 1e18; G.resize(N); rep(i, N) rep(j, N) G[i].push_back(INF); auto calDist = [](int x1, int y1, int x2, int y2) { return (ll)((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); }; rep(i, N) rep(j, i) { G[i][j] = G[j][i] = A * A * calDist(a[i], b[i], a[j], b[j]); } vvl dirctG = G; rep(i, N) G[i][i] = 0; rep(k, N) rep(i, N) { if (G[i][k] == INF) continue; rep(j, N) { if (G[k][j] == INF) continue; chmin(G[i][j], G[i][k] + G[k][j]); } } vi ret; // 経路復元できるダイクストラ auto dijkstra = [&](int now, int nexV) { vl dist(N, INFTY); vi prev(N, -1); priority_queue<pii, vpii, greater<pii>> pq; pq.emplace(0, now); dist[now] = 0; while (!pq.empty()) { auto p = pq.top(); pq.pop(); int from = p.second; if (dist[from] < p.first) continue; rep(to, N) { if (chmin(dist[to], dist[from] + dirctG[from][to])) { prev[to] = from; pq.emplace(dist[to], to); } } } // 経路復元する int current = nexV; stack<int> nowToNexRev; while (current != now) { nowToNexRev.push(current + 1); current = prev[current]; } while (!nowToNexRev.empty()) { ret.push_back(nowToNexRev.top()); nowToNexRev.pop(); } }; vi color(N); int now = 0; color[0] = 1; ret.push_back(1); rep(i, N - 1) { // 未訪問で1番近い頂点を見つける ll nexD = INF; int nexV = -1; rep(j, N) { if (color[j]) continue; if (chmin(nexD, G[now][j])) nexV = j; } // ダイクストラして経路復元 dijkstra(now, nexV); // now = nexV; color[nexV] = 1; } // 最終地点から1までもダイクストラ dijkstra(now, 0); return ret; } // 宇宙ステーションの初期配置 vpii initStation() { vpii ret; ret.emplace_back(300, 300); ret.emplace_back(300, 500); ret.emplace_back(300, 700); ret.emplace_back(500, 300); ret.emplace_back(500, 700); ret.emplace_back(700, 300); ret.emplace_back(700, 500); ret.emplace_back(700, 700); return ret; } ll calcDist(int prev, int next) { --prev, --next; if (prev < N && next < N) { return G[prev][next]; } auto dist = [](int x1, int y1, int x2, int y2) { return (ll)((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); }; int x1 = prev < N ? a[prev] : cd[prev - N].first; int y1 = prev < N ? b[prev] : cd[prev - N].second; int x2 = next < N ? a[next] : cd[next - N].first; int y2 = next < N ? b[next] : cd[next - N].second; ll ret = dist(x1, y1, x2, y2); if (prev < N || next < N) ret *= 5; return ret; } ll annealing(double endTime, vi &tr, ll currentScore) { /* 焼きなまし法 */ auto startClock = system_clock::now(); const static double START_TEMP = 1e4; // 開始時の温度 const static double END_TEMP = 10; // 終了時の温度 const static double END_TIME = endTime; // 終了時間(秒) double time = 0.0; // 経過時間(秒) double progressRatio = 0; double temp = START_TEMP; // ループ回数 int cnt = 0; while (true) { cnt++; // if (cnt == 30) break; // 進捗。開始時が0.0で、終了時が1.0 if (!(cnt % 5000)) { // 時間更新 time = ((double)duration_cast<microseconds>(system_clock::now() - startClock) .count() * 1e-6); if (time >= END_TIME) break; // 温度更新 progressRatio = time / END_TIME; temp = START_TEMP + (END_TEMP - START_TEMP) * progressRatio; // 経路圧縮 vi tmpTr = tr; tr.clear(); tr.push_back(tmpTr[0]); rep(i, (int)tmpTr.size() - 1) if (tr.back() != tmpTr[i + 1]) tr.push_back(tmpTr[i + 1]); } // 近傍の割合 int neighType = randXor() % 20; if (neighType < 4) { /* 近傍1:ステーションを適当な位置に挿入 */ int stationId = N + randXor() % M + 1; // 最初と最後は1固定なので最初や最後には入れない int idx = 1 + randXor() % ((int)tr.size() - 1); int prev = tr[idx - 1]; int next = tr[idx]; ll oldScore = calcDist(prev, next); ll newScore = calcDist(prev, stationId) + calcDist(stationId, next); // 解の更新 ll deltaScore = oldScore - newScore; const double probability = exp((double)deltaScore / temp); if (probability >= rand01()) { currentScore -= deltaScore; // 挿入する tr.insert(tr.begin() + idx, stationId); } } else if (neighType < 8) { /* 近傍2:適当な位置のステーションを削除 */ int len = (int)tr.size(); // ステーションを探す(適当に上限を10としている) int idx = 0; int trial = 0; while (tr[idx] <= N && trial < 10) { idx = randXor() % len; trial++; } if (tr[idx] <= N) continue; // ステーションを指すidxが見つかった場合 int stationId = tr[idx]; int prev = tr[idx - 1]; int next = tr[idx + 1]; ll oldScore = calcDist(prev, stationId) + calcDist(stationId, next); ll newScore = calcDist(prev, next); // 解の更新 ll deltaScore = oldScore - newScore; const double probability = exp((double)deltaScore / temp); if (probability >= rand01()) { currentScore -= deltaScore; // 挿入する tr.erase(tr.begin() + idx); } } else if (neighType < 9) { /* 近傍3:ステーションの移動 */ int stationId = N + randXor() % M + 1; // 暫定解からステーションを削除 vi tmpTr; rep(i, (int)tr.size()) if (tr[i] != stationId) tmpTr.push_back(tr[i]); // ステーションを移動(移動範囲も徐々に小さくしてる!) pii oldP = cd[stationId - N - 1]; pii newP = oldP; const double MAX_DELTA = 400; const double MIN_DELTA = 10; int d = (int)(MAX_DELTA * (endTime - time) + MIN_DELTA * time); int mx = min(MAP_SIZE, newP.first + d); int mn = max(0, newP.first - d); newP.first = mn + randXor() % (mx - mn + 1); mx = min(MAP_SIZE, newP.second + d); mn = max(0, newP.second - d); newP.second = mn + randXor() % (mx - mn + 1); cd[stationId - N - 1] = newP; // 各辺でステーションを使うかgreedyに判定 vi newTr; newTr.reserve(250); ll newScore = 0; rep(i, (int)tmpTr.size() - 1) { newTr.push_back(tmpTr[i]); ll oldDist = calcDist(tmpTr[i], tmpTr[i + 1]); ll newDist = calcDist(tmpTr[i], stationId) + calcDist(stationId, tmpTr[i + 1]); if (newDist < oldDist) { newScore += newDist; newTr.push_back(stationId); } else { newScore += oldDist; } } newTr.push_back(tmpTr.back()); // 解の更新 ll deltaScore = currentScore - newScore; const double probability = exp((double)deltaScore / temp); if (probability >= rand01()) { currentScore = newScore; tr.resize(newTr.size()); tr = newTr; } else { cd[stationId - N - 1] = oldP; } } else { /* 近傍4:2-opt */ // 最初と最後は1固定なので入れ替えない int l = (int)tr.size(); int from = 1 + randXor() % (l - 2); int to = 1 + randXor() % (l - 2); if (from == to) { to += 1; if (to == l - 1) to = 2; } if (from > to) swap(from, to); int i0 = tr[from - 1]; int i1 = tr[from]; int i2 = tr[to - 1]; int i3 = tr[to]; ll d0123 = calcDist(i0, i1) + calcDist(i2, i3); ll d0213 = calcDist(i0, i2) + calcDist(i3, i1); ll newScore = currentScore + d0213 - d0123; // 解の更新 ll deltaScore = currentScore - newScore; const double probability = exp((double)deltaScore / temp); if (probability >= rand01()) { currentScore = newScore; // 繋ぎ直す reverse(tr.begin() + from, tr.begin() + to); } } // trを綺麗にする // if (cnt % 1000) { // vi cleanTr; // cleanTr.push_back(tr[0]); // rep(i, (int)tr.size() - 1) { // if (tr[i + 1] != cleanTr.back()) cleanTr.push_back(tr[i + 1]); // } // tr.resize((int)cleanTr.size()); // tr = cleanTr; // } } debug(cnt); // 戻り値 return currentScore; } int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); /* input */ cin >> N >> M; a.resize(N); b.resize(N); rep(i, N) cin >> a[i] >> b[i]; /* solve */ // 解説の「貪欲法による解法(その2)」を再現 // ワーフロして経路復元ダイクストラ vi initTr = terryInit(); // debug(calcScore(tr)); // auto maxScore = calcScore(tr); ll currentScore = 0; rep(i, (int)initTr.size() - 1) currentScore += calcDist(initTr[i], initTr[i + 1]); ll bestScore = currentScore; vi bestTr; vpii bestCd(8); // 3回焼きなます cd = initStation(); rep(i, 5) { vi thisTr = initTr; thisTr.reserve(250); ll thisScore = annealing(0.195, thisTr, currentScore); if (chmin(bestScore, thisScore)) { bestTr = thisTr; bestCd = cd; } } /* output */ int V = (int)bestTr.size(); // assert(bestTr[0] == 1); // assert(bestTr[V - 1] == 1); rep(i, M) cout << bestCd[i].first << " " << bestCd[i].second << "\n"; cout << V << endl; rep(i, V) { if (bestTr[i] <= N) { cout << "1 " << bestTr[i] << "\n"; } else { cout << "2 " << bestTr[i] - N << "\n"; } } return 0; }