// >>> TEMPLATES #include using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll using pii = pair; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep1(i, n) for (int i = 1; i <= (int)(n); i++) #define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i, n) for (int i = (int)(n); i >= 1; i--) #define loop(i, a, B) for (int i = a; i B; i++) #define loopR(i, a, B) for (int i = a; i B; i--) #define all(x) begin(x), end(x) #define allR(x) rbegin(x), rend(x) #define pb push_back #define eb emplace_back #define fst first #define snd second template auto constexpr inf_ = numeric_limits::max()/2-1; auto constexpr INF32 = inf_; auto constexpr INF64 = inf_; auto constexpr INF = inf_; #ifdef LOCAL #include "debug.hpp" #define oj_local(x, y) (y) #else #define dump(...) (void)(0) #define debug if (0) #define oj_local(x, y) (x) #endif template struct pque : priority_queue, Comp> { vector &data() { return this->c; } void clear() { this->c.clear(); } }; template using pque_max = pque>; template using pque_min = pque>; template ::value, int> = 0> ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template ::value, int> = 0> ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template ())), class = typename enable_if::value>::type> istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; } template ostream& operator<<(ostream& os, pair const& p) { return os << p.first << " " << p.second; } template istream& operator>>(istream& is, pair& p) { return is >> p.first >> p.second; } template ostream& operator<<(ostream& os, tuple const& t) { bool f = true; apply([&](auto&&... x) { ((os << (f ? f = false, "" : " ") << x), ...); }, t); return os; } template istream& operator>>(istream& is, tuple& t) { apply([&](auto&&... x) { ((is >> x), ...); }, t); return is; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward(f)) {} template constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward(x)...); } }; struct MakeFixPoint { template constexpr auto operator|(F&& f) const { return FixPoint(forward(f)); } }; #define def(name, ...) auto name = MakeFixPoint() | [&](auto &&name, __VA_ARGS__) template struct vec_impl { using type = vector::type>; template static type make_v(size_t n, U&&... x) { return type(n, vec_impl::make_v(forward(x)...)); } }; template struct vec_impl { using type = T; static type make_v(T const& x = {}) { return x; } }; template using vec = typename vec_impl::type; template auto make_v(Args&&... args) { return vec_impl::make_v(forward(args)...); } template void quit(T const& x) { cout << x << '\n'; exit(0); } template constexpr bool chmin(T& x, U const& y) { if (x > (T)y) { x = (T)y; return true; } return false; } template constexpr bool chmax(T& x, U const& y) { if (x < (T)y) { x = (T)y; return true; } return false; } template constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits::value_type{}); } template ()))> constexpr auto min(T const& a) { return *min_element(begin(a), end(a)); } template ()))> constexpr auto max(T const& a) { return *max_element(begin(a), end(a)); } template constexpr T min(set const& st) { assert(st.size()); return *st.begin(); } template constexpr T max(set const& st) { assert(st.size()); return *prev(st.end()); } template constexpr T min(multiset const& st) { assert(st.size()); return *st.begin(); } template constexpr T max(multiset const& st) { assert(st.size()); return *prev(st.end()); } constexpr ll max(signed x, ll y) { return max(x, y); } constexpr ll max(ll x, signed y) { return max(x, y); } constexpr ll min(signed x, ll y) { return min(x, y); } constexpr ll min(ll x, signed y) { return min(x, y); } template int sz(T const& x) { return x.size(); } template int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); } template int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); } constexpr ll mod(ll x, ll m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; } constexpr ll div_floor(ll x, ll y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); } constexpr ll div_ceil(ll x, ll y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); } constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 }; constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 }; auto four_nbd(int n, int m) { static vector> v; return [n, m](int i, int j) { const int dx[] = { 1, 0, -1, 0 }, dy[] = { 0, 1, 0, -1 }; v.clear(); rep (dir, 4) { int ni = i+dx[dir], nj = j+dy[dir]; if (0 <= ni and ni < n and 0 <= nj and nj < m) { v.emplace_back(ni, nj); } } return v; }; }; template vector iota(int n, Comp comp) { vector idx(n); iota(begin(idx), end(idx), 0); stable_sort(begin(idx), end(idx), comp); return idx; } constexpr int popcnt(ll x) { return __builtin_popcountll(x); } mt19937_64 seed_{random_device{}()}; template Int rand(Int a, Int b) { return uniform_int_distribution(a, b)(seed_); } i64 irand(i64 a, i64 b) { return rand(a, b); } // [a, b] u64 urand(u64 a, u64 b) { return rand(a, b); } // template void shuffle(It l, It r) { shuffle(l, r, seed_); } template V &operator--(V &v) { for (auto &x : v) --x; return v; } template V &operator++(V &v) { for (auto &x : v) ++x; return v; } bool next_product(vector &v, int m) { repR (i, v.size()) if (++v[i] < m) return true; else v[i] = 0; return false; } bool next_product(vector &v, vector const& s) { repR (i, v.size()) if (++v[i] < s[i]) return true; else v[i] = 0; return false; } template int sort_unique(vec &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v.size(); } template auto prefix_sum(It l, It r) { vector s = { 0 }; while (l != r) s.emplace_back(s.back() + *l++); return s; } template auto suffix_sum(It l, It r) { vector s = { 0 }; while (l != r) s.emplace_back(*--r + s.back()); reverse(s.begin(), s.end()); return s; } template T pop(vector &a) { auto x = a.back(); a.pop_back(); return x; } template T pop_back(vector &a) { auto x = a.back(); a.pop_back(); return x; } template T pop(priority_queue &a) { auto x = a.top(); a.pop(); return x; } template T pop(queue &a) { auto x = a.front(); a.pop(); return x; } template T pop_front(deque &a) { auto x = a.front(); a.pop_front(); return x; } template T pop_back(deque &a) { auto x = a.back(); a.pop_back(); return x; } template T pop_front(set &a) { auto x = *a.begin(); a.erase(a.begin()); return x; } template T pop_back(set &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } template T pop_front(multiset &a) { auto it = a.begin(); auto x = *it; a.erase(it); return x; } template T pop_back(multiset &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } // <<< // >>> HLD #ifndef EDGE_INFO #define EDGE_INFO constexpr int dest(int v) { return v; } template ().to)> constexpr int dest(E const& e) { return e.to; } constexpr int cost(...) { return 1; } template ().cost)> constexpr auto cost(E const& e) { return e.cost; } template using cost_t = decltype(cost(declval())); #endif template struct HLD { int n, m = 0, root; vector> es; vector csr; vector csr_index, id, inv, head, sz, par, dep; bool built = false; HLD() : n(0), root(-1) {}; HLD(int n, int root = 0) : n(n), root(root), csr(2*(n-1)), csr_index(n+1), id(n), inv(n), head(n), sz(n), par(n), dep(n) { assert(0 <= root); assert(root < n); if (n == 1) build(); } int size() const { return n; } template struct edge_list { It b, e; It begin() const { return b; } It end() const { return e; } int size() const { return e-b; } edge& operator[](int i) const { return *(b + i); } }; auto operator[](int x) { assert(built); assert(0 <= x); assert(x < n); auto b = csr.begin() + csr_index[x]; auto e = csr.begin() + csr_index[x+1] - (x != root); return edge_list { b, e }; } auto operator[](int x) const { assert(built); assert(0 <= x); assert(x < n); auto b = csr.begin() + csr_index[x]; auto e = csr.begin() + csr_index[x+1] - (x != root); return edge_list { b, e }; } template void add_edge(int x, int y, Args&&... args) { assert(not built); es.emplace_back(x, edge { y, args... }); es.emplace_back(y, edge { x, args... }); if (++m == n-1) build(); } void build() { assert(m == n-1); for (auto const& [x, e] : es) csr_index[x+1]++; rep (x, n) csr_index[x+1] += csr_index[x]; auto pos = csr_index; for (auto const& [x, e] : es) csr[pos[x]++] = e; fill(sz.begin(), sz.end(), 0); dep[root] = 0, par[root] = -1, head[root] = root; int time = 0; dfs1(root), dfs2(root, time); rep (x, n) inv[id[x]] = x; built = true; } int lca(int x, int y) const { assert(built); while (true) { if (id[x] > id[y]) swap(x, y); if (head[x] == head[y]) return x; y = par[head[y]]; } } int dist(int x, int y) const { assert(built); return dep[x] + dep[y] - 2*dep[lca(x, y)]; } int eid(int i) const { assert(built); auto const& [x, e] = es[i]; auto y = dest(e); return x == par[y] ? id[y] : id[x]; } int eid(int x, int y) const { assert(built); if (x == par[y]) return id[y]; if (y == par[x]) return id[x]; assert(false); return -1; } int vid(int x) const { assert(built); return id[x]; } int in(int x) const { assert(built); return id[x]; } int out(int x) const { assert(built); return id[x] + sz[x]; } pair subtree(int x) const { return { in(x), out(x) }; } pair cut_size(int x, int y) const { assert(built); if (x == par[y]) return { n-sz[y], sz[y] }; if (y == par[x]) return { sz[x], n-sz[y] }; assert(false); return { -1, -1 }; } int meet(int x, int y, int z) const { return lca(x, y) ^ lca(y, z) ^ lca(z, x); } bool is_ancestor(int x, int y) const { // excluding x == y return in(x) < in(y) and out(y) <= out(x); } int step(int x, int y) const { // move one step from x toward y assert(built); assert(x != y); if (not is_ancestor(x, y)) return par[x]; while (true) { if (head[x] == head[y]) return dest(csr[csr_index[x]]); y = head[y]; if (x == par[y]) return y; y = par[y]; } } int climb(int x, int d) const { assert(built); assert(0 <= d); assert(d <= dep[x]); auto const dep_y = dep[x] - d; while (true) { x = head[x]; if (dep[x] <= dep_y) return inv[id[x] + dep_y - dep[x]]; x = par[x]; } } // jump from x toward y by distance d int jump(int x, int y, int d) const { assert(built); auto const z = lca(x, y); auto const dist = dep[x] + dep[y] - 2*dep[z]; return d <= dep[x] - dep[z] ? climb(x, d) : climb(y, dist-d); } // path [x, y] = xpath + lca + ypath // xpath : upward, ypath : downward // sets xpath, ypath and returns id[lca] int decompose(int x, int y, vector> &xpath, vector> &ypath) const { assert(built); xpath.clear(); ypath.clear(); while (true) { if (head[x] == head[y]) { if (id[x] > id[y]) xpath.emplace_back(id[y] + 1, id[x] + 1); if (id[x] < id[y]) ypath.emplace_back(id[x] + 1, id[y] + 1); reverse(ypath.begin(), ypath.end()); return min(id[x], id[y]); } else if (id[x] > id[y]) { xpath.emplace_back(id[head[x]], id[x] + 1); x = par[head[x]]; } else { ypath.emplace_back(id[head[y]], id[y] + 1); y = par[head[y]]; } } } template vector> const& path(int x, int y) const { assert(built); static vector> ret; ret.clear(); while (true) { if (id[x] > id[y]) swap(x, y); if (head[x] == head[y]) { int l = id[x] + (with_lca ? 0 : 1), r = id[y] + 1; if (l < r) ret.emplace_back(l, r); return ret; } else { ret.emplace_back(id[head[y]], id[y] + 1); y = par[head[y]]; } } } auto const& vertices(int x, int y) const { return path(x, y); } auto const& edges(int x, int y) const { return path(x, y); } int dfs1(int x) { const int l = csr_index[x], r = csr_index[x+1] - (x != root); int ma_pos = l, ma = -1; sz[x] = 1; for (int i = l; i < r; ++i) { auto &e = csr[i]; if (dest(e) == par[x]) swap(e, csr[r]); par[dest(e)] = x; dep[dest(e)] = dep[x] + 1; int sub = dfs1(dest(e)); sz[x] += sub; if (ma < sub) ma = sub, ma_pos = i; } swap(csr[l], csr[ma_pos]); return sz[x]; } void dfs2(int x, int &time) { id[x] = time++; const int l = csr_index[x], r = csr_index[x+1] - (x != root); for (int i = l; i < r; ++i) { const int y = dest(csr[i]); head[y] = (i == l ? head[x] : y); dfs2(y, time); } } }; // <<< // >>> segment tree template struct Segtree : Handler { using Value = typename Handler::Value; using Handler::unit_value; // () -> Value using Handler::merge; // (Value, Value) -> Value vector v; int n; Segtree() {} template Segtree(T&&... x) { init(forward(x)...); } template ()(0))> void init(int n, F gen) { assert(n >= 0); this->n = n; v.resize(2*n, unit_value()); for (int i = 0; i < n; i++) v[n+i] = gen(i); for (int i = n-1; i >= 1; i--) v[i] = merge(v[i<<1], v[i<<1|1]); } void init(int n) { init(n, [&](int) { return unit_value(); }); } void init(int n, Value const& x) { init(n, [&](int) { return x; }); } void init(vector const& v) { init(v.size(), [&](int i) { return v[i]; }); } int size() const { return n; } void set(int i, Value const& x) { assert(0 <= i); assert(i < size()); i += n; v[i] = x; while (i >>= 1) v[i] = merge(v[i<<1], v[i<<1|1]); } Value operator[](int i) const { return get(i); } Value get(int i) const { assert(0 <= i); assert(i < size()); return v[n + i]; } // [l, r) Value get(int l, int r) const { assert(0 <= l); assert(l <= r); assert(r <= size()); Value x = unit_value(), y = unit_value(); for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l&1) x = merge(x, v[l++]); if (r&1) y = merge(v[--r], y); } return merge(x, y); } Value get_all() const { return get(0, size()); } template int max_right(int l, F f) { assert(0 <= l); assert(l <= size()); assert(f(unit_value())); l += n; const int r = size() << 1; Value x = unit_value(); while (true) { if (l == r) return size(); int k = __builtin_ctz(l | 1 << __lg(r - l)); auto y = merge(x, v[l >> k]); if (not f(y)) { l >>= k; break; } x = y, l += 1 << k; } while (l < size()) { auto y = merge(x, v[l <<= 1]); if (f(y)) x = y, l++; } return l - size(); } template int min_left(int r, F f) { assert(0 <= r); assert(r <= size()); assert(f(unit_value())); r += n; const int l = size(); Value x = unit_value(); while (true) { if (l == r) return 0; int k = __builtin_ctz(r | 1 << __lg(r - l)); auto y = merge(v[(r >> k) - 1], x); if (not f(y)) { r >>= k; --r; break; } x = y, r -= 1 << k; } while (r < size()) { r = r << 1 | 1; auto y = merge(v[r], x); if (f(y)) x = y, r--; } return r + 1 - size(); } vector dat() const { vector ret(size()); for (int i = 0; i < size(); i++) ret[i] = get(i); return ret; } }; // <<< template struct Sum { using Value = T; static constexpr bool commutative = true; constexpr static Value unit_value() { return 0; } constexpr static Value merge(Value const& x, Value const& y) { return x + y; } }; // >>> HLDSegtree template struct HLDSegtree { HLD const *pg; Segtree seg, rseg; using Value = typename Mono::Value; static constexpr bool com = Mono::commutative; HLDSegtree(HLD const& g) : pg(&g), seg(g.size()) { if constexpr (com) rseg.init(g.size()); } HLDSegtree(HLD const& g, vector const& init) : pg(&g) { const int n = g.size(); vector init_id(n); assert((int)init.size() == (vertex_query ? n : n-1)); rep (i, init.size()) init_id[id(i)] = init[i]; seg.init(init_id); if constexpr (not com) { reverse(init_id.begin(), init_id.end()); rseg.init(init_id); } } int id(int i) const { if constexpr (vertex_query) { return pg->vid(i); } else { return pg->eid(i); } } int size() const { return pg->size(); } Value get(int i) const { return seg.get(id(i)); } Value operator[](int i) const { return seg.get(id(i)); } Value get_all() const { seg.get_all(); } void set(int i, Value const& v) { seg.set(id(i), v); if constexpr (not com) rseg.set(rseg.size()-1-id(i), v); } Value get(int x, int y) const { static vector> xpath, ypath; int lca_id = pg->decompose(x, y, xpath, ypath); Value val = Mono::unit_value(); for (auto [l, r] : xpath) { if constexpr (com) { val = Mono::merge(val, seg.get(l, r)); } else { const int n = pg->size(); val = Mono::merge(val, rseg.get(n-r, n-l)); } } if constexpr (vertex_query) { val = Mono::merge(val, seg[lca_id]); } for (auto [l, r] : ypath) { val = Mono::merge(val, seg.get(l, r)); } return val; } vector dat() const { vector v = seg.dat(), ret(v.size()); rep (i, v.size()) ret[i] = v[id(i)]; return ret; } }; template using HLDSegtreeV = HLDSegtree; template using HLDSegtreeE = HLDSegtree; // <<< int32_t main() { int n; cin >> n; vector s(n); cin >> s; int q; cin >> q; vector> qs; rep (i, q) { int t; cin >> t; if (t == 1) { int i; cin >> i; --i; char c; cin >> c; qs.eb(t, i, c); } else { int i; cin >> i; --i; qs.eb(t, i, 0); } } struct node { array ch; node() { fill(all(ch), -1); } }; vector ns = { node() }; vector pos(n, 0); auto add = [&](int i, char c) { c -= 'a'; int x = pos[i]; if (ns[x].ch[c] < 0) { ns[x].ch[c] = ns.size(); ns.eb(); } pos[i] = ns[x].ch[c]; }; rep (i, n) { for (char c : s[i]) { add(i, c); } } for (auto [t, i, c] : qs) { if (t == 1) add(i, c); } HLD g(ns.size()); rep (x, g.size()) { for (int y : ns[x].ch) { if (y >= 0) g.add_edge(x, y); } } HLDSegtreeV> seg(g); fill(all(pos), 0); auto add2 = [&](int i, char c) { c -= 'a'; int x = pos[i]; x = ns[x].ch[c]; pos[i] = x; seg.set(x, seg[x] + 1); }; rep (i, n) { for (char c : s[i]) { add2(i, c); } } for (auto [t, i, c] : qs) { if (t == 1) { add2(i, c); } else { cout << seg.get(0, pos[i]) << '\n'; } } }