using System; using System.Linq; using CompLib.Util; using System.Threading; using System.IO; using System.Collections.Generic; using System.Text; using CompLib.Collections.Generic; using CompLib.Mathematics; public class Program { int N; string S; public void Solve() { var sc = new Scanner(); N = sc.NextInt(); S = sc.Next(); ModInt ans = 0; var dp = new ModInt[N + 1, 3]; dp[0, 0] = 1; for (int i = 0; i < N; i++) { for (int p = 0; p < 3; p++) { var cur = dp[i, p]; if (S[i] == '?') { for (int q = 0; q <= 9; q++) { dp[i + 1, (p + q) % 3] += cur; } } else { dp[i + 1, (p + S[i] - '0') % 3] += cur; } } ans += dp[i + 1, 0]; dp[i + 1, 0] += 1; } Console.WriteLine(ans); } public static void Main(string[] args) => new Program().Solve(); // public static void Main(string[] args) => new Thread(new Program().Solve, 1 << 27).Start(); } // https://bitbucket.org/camypaper/complib namespace CompLib.Mathematics { #region ModInt /// /// [0,) までの値を取るような数 /// public struct ModInt { /// /// 剰余を取る値. /// // public const long Mod = (int)1e9 + 7; public const long Mod = 998244353; /// /// 実際の数値. /// public long num; /// /// 値が であるようなインスタンスを構築します. /// /// インスタンスが持つ値 /// パフォーマンスの問題上,コンストラクタ内では剰余を取りません.そのため, ∈ [0,) を満たすような を渡してください.このコンストラクタは O(1) で実行されます. public ModInt(long n) { num = n; } /// /// このインスタンスの数値を文字列に変換します. /// /// [0,) の範囲内の整数を 10 進表記したもの. public override string ToString() { return num.ToString(); } public static ModInt operator +(ModInt l, ModInt r) { l.num += r.num; if (l.num >= Mod) l.num -= Mod; return l; } public static ModInt operator -(ModInt l, ModInt r) { l.num -= r.num; if (l.num < 0) l.num += Mod; return l; } public static ModInt operator *(ModInt l, ModInt r) { return new ModInt(l.num * r.num % Mod); } public static implicit operator ModInt(long n) { n %= Mod; if (n < 0) n += Mod; return new ModInt(n); } /// /// 与えられた 2 つの数値からべき剰余を計算します. /// /// べき乗の底 /// べき指数 /// 繰り返し二乗法により O(N log N) で実行されます. public static ModInt Pow(ModInt v, long k) { return Pow(v.num, k); } /// /// 与えられた 2 つの数値からべき剰余を計算します. /// /// べき乗の底 /// べき指数 /// 繰り返し二乗法により O(N log N) で実行されます. public static ModInt Pow(long v, long k) { long ret = 1; for (k %= Mod - 1; k > 0; k >>= 1, v = v * v % Mod) if ((k & 1) == 1) ret = ret * v % Mod; return new ModInt(ret); } /// /// 与えられた数の逆元を計算します. /// /// 逆元を取る対象となる数 /// 逆元となるような値 /// 法が素数であることを仮定して,フェルマーの小定理に従って逆元を O(log N) で計算します. public static ModInt Inverse(ModInt v) { return Pow(v, Mod - 2); } } #endregion #region Binomial Coefficient public class BinomialCoefficient { public ModInt[] fact, ifact; public BinomialCoefficient(int n) { fact = new ModInt[n + 1]; ifact = new ModInt[n + 1]; fact[0] = 1; for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * i; ifact[n] = ModInt.Inverse(fact[n]); for (int i = n - 1; i >= 0; i--) ifact[i] = ifact[i + 1] * (i + 1); ifact[0] = ifact[1]; } public ModInt this[int n, int r] { get { if (n < 0 || n >= fact.Length || r < 0 || r > n) return 0; return fact[n] * ifact[n - r] * ifact[r]; } } public ModInt RepeatedCombination(int n, int k) { if (k == 0) return 1; return this[n + k - 1, k]; } } #endregion } namespace CompLib.Collections.Generic { using System; using System.Diagnostics; public class SegmentTree { // 見かけ上の大きさ、実際の大きさ private readonly int _n, _size; private T[] _array; private T _identity; private Func _operation; public SegmentTree(int n, Func operation, T identity) { _n = n; _size = 1; while (_size < _n) { _size *= 2; } _identity = identity; _operation = operation; _array = new T[_size * 2]; for (int i = 1; i < _size * 2; i++) { _array[i] = _identity; } } public SegmentTree(T[] a, Func operation, T identity) { _n = a.Length; _size = 1; while (_size < _n) { _size *= 2; } _identity = identity; _operation = operation; _array = new T[_size * 2]; for (int i = 0; i < a.Length; i++) { _array[i + _size] = a[i]; } for (int i = a.Length; i < _size; i++) { _array[i + _size] = identity; } for (int i = _size - 1; i >= 1; i--) { _array[i] = operation(_array[i * 2], _array[i * 2 + 1]); } } /// /// A[i]をnに更新 O(log N) /// /// /// public void Update(int i, T n) { Debug.Assert(0 <= i && i < _n); i += _size; _array[i] = n; while (i > 1) { i /= 2; _array[i] = _operation(_array[i * 2], _array[i * 2 + 1]); } } /// /// A[left] op A[left+1] ... op A[right-1]を求める /// /// /// /// public T Query(int left, int right) { Debug.Assert(0 <= left && left <= right && right <= _n); T sml = _identity; T smr = _identity; left += _size; right += _size; while (left < right) { if ((left & 1) != 0) sml = _operation(sml, _array[left++]); if ((right & 1) != 0) smr = _operation(_array[--right], smr); left >>= 1; right >>= 1; } return _operation(sml, smr); } /// /// op(a[0],a[1],...,a[n-1])を返します /// /// public T All() { return _array[1]; } /// /// f(op(a[l],a[l+1],...a[r-1])) = trueとなる最大のrを返します /// /// /// /// public int MaxRight(int l, Func f) { Debug.Assert(0 <= l && l <= _n); #if DEBUG Debug.Assert(f(_identity)); #endif if (l == _n) return _n; l += _size; T sm = _identity; do { while (l % 2 == 0) l >>= 1; if (!f(_operation(sm, _array[l]))) { while (l < _size) { l <<= 1; if (f(_operation(sm, _array[l]))) { sm = _operation(sm, _array[l]); l++; } } return l - _size; } sm = _operation(sm, _array[l]); l++; } while ((l & -l) != l); return _n; } /// /// f(op(a[l],a[l+1],...a[r-1])) = trueとなる最小のlを返します /// /// /// /// public int MinLeft(int r, Func f) { Debug.Assert(0 <= r && r <= _n); #if DEBUG Debug.Assert(f(_identity)); #endif if (r == 0) return 0; r += _size; T sm = _identity; do { r--; while (r > 1 && (r % 2 != 0)) r >>= 1; if (!f(_operation(_array[r], sm))) { while (r < _size) { r = (2 * r + 1); if (f(_operation(_array[r], sm))) { sm = _operation(_array[r], sm); r--; } } return r + 1 - _size; } sm = _operation(_array[r], sm); } while ((r & -r) != r); return 0; } public T this[int i] { set { Update(i, value); } get { Debug.Assert(0 <= i && i < _n); return _array[i + _size]; } } } } namespace CompLib.Util { using System; using System.Linq; class Scanner { private string[] _line; private int _index; private const char Separator = ' '; public Scanner() { _line = new string[0]; _index = 0; } public string Next() { if (_index >= _line.Length) { string s; do { s = Console.ReadLine(); } while (s.Length == 0); _line = s.Split(Separator); _index = 0; } return _line[_index++]; } public string ReadLine() { _index = _line.Length; return Console.ReadLine(); } public int NextInt() => int.Parse(Next()); public int NextInt1() => NextInt() - 1; public long NextLong() => long.Parse(Next()); public double NextDouble() => double.Parse(Next()); public decimal NextDecimal() => decimal.Parse(Next()); public char NextChar() => Next()[0]; public char[] NextCharArray() => Next().ToCharArray(); public string[] Array() { string s = Console.ReadLine(); _line = s.Length == 0 ? new string[0] : s.Split(Separator); _index = _line.Length; return _line; } public int[] IntArray() => Array().Select(int.Parse).ToArray(); public int[] IntArray1() => Array().Select(s => int.Parse(s) - 1).ToArray(); public long[] LongArray() => Array().Select(long.Parse).ToArray(); public double[] DoubleArray() => Array().Select(double.Parse).ToArray(); public decimal[] DecimalArray() => Array().Select(decimal.Parse).ToArray(); } }