using System;
using System.Linq;
using CompLib.Util;
using System.Threading;
using System.IO;
using System.Collections.Generic;
using System.Text;
using CompLib.Collections.Generic;
using CompLib.Mathematics;
public class Program
{
int N;
string S;
public void Solve()
{
var sc = new Scanner();
N = sc.NextInt();
S = sc.Next();
ModInt ans = 0;
var dp = new ModInt[N + 1, 3];
dp[0, 0] = 1;
for (int i = 0; i < N; i++)
{
for (int p = 0; p < 3; p++)
{
var cur = dp[i, p];
if (S[i] == '?')
{
for (int q = 0; q <= 9; q++)
{
dp[i + 1, (p + q) % 3] += cur;
}
}
else
{
dp[i + 1, (p + S[i] - '0') % 3] += cur;
}
}
ans += dp[i + 1, 0];
dp[i + 1, 0] += 1;
}
Console.WriteLine(ans);
}
public static void Main(string[] args) => new Program().Solve();
// public static void Main(string[] args) => new Thread(new Program().Solve, 1 << 27).Start();
}
// https://bitbucket.org/camypaper/complib
namespace CompLib.Mathematics
{
#region ModInt
///
/// [0,) までの値を取るような数
///
public struct ModInt
{
///
/// 剰余を取る値.
///
// public const long Mod = (int)1e9 + 7;
public const long Mod = 998244353;
///
/// 実際の数値.
///
public long num;
///
/// 値が であるようなインスタンスを構築します.
///
/// インスタンスが持つ値
/// パフォーマンスの問題上,コンストラクタ内では剰余を取りません.そのため, ∈ [0,) を満たすような を渡してください.このコンストラクタは O(1) で実行されます.
public ModInt(long n) { num = n; }
///
/// このインスタンスの数値を文字列に変換します.
///
/// [0,) の範囲内の整数を 10 進表記したもの.
public override string ToString() { return num.ToString(); }
public static ModInt operator +(ModInt l, ModInt r) { l.num += r.num; if (l.num >= Mod) l.num -= Mod; return l; }
public static ModInt operator -(ModInt l, ModInt r) { l.num -= r.num; if (l.num < 0) l.num += Mod; return l; }
public static ModInt operator *(ModInt l, ModInt r) { return new ModInt(l.num * r.num % Mod); }
public static implicit operator ModInt(long n) { n %= Mod; if (n < 0) n += Mod; return new ModInt(n); }
///
/// 与えられた 2 つの数値からべき剰余を計算します.
///
/// べき乗の底
/// べき指数
/// 繰り返し二乗法により O(N log N) で実行されます.
public static ModInt Pow(ModInt v, long k) { return Pow(v.num, k); }
///
/// 与えられた 2 つの数値からべき剰余を計算します.
///
/// べき乗の底
/// べき指数
/// 繰り返し二乗法により O(N log N) で実行されます.
public static ModInt Pow(long v, long k)
{
long ret = 1;
for (k %= Mod - 1; k > 0; k >>= 1, v = v * v % Mod)
if ((k & 1) == 1) ret = ret * v % Mod;
return new ModInt(ret);
}
///
/// 与えられた数の逆元を計算します.
///
/// 逆元を取る対象となる数
/// 逆元となるような値
/// 法が素数であることを仮定して,フェルマーの小定理に従って逆元を O(log N) で計算します.
public static ModInt Inverse(ModInt v) { return Pow(v, Mod - 2); }
}
#endregion
#region Binomial Coefficient
public class BinomialCoefficient
{
public ModInt[] fact, ifact;
public BinomialCoefficient(int n)
{
fact = new ModInt[n + 1];
ifact = new ModInt[n + 1];
fact[0] = 1;
for (int i = 1; i <= n; i++)
fact[i] = fact[i - 1] * i;
ifact[n] = ModInt.Inverse(fact[n]);
for (int i = n - 1; i >= 0; i--)
ifact[i] = ifact[i + 1] * (i + 1);
ifact[0] = ifact[1];
}
public ModInt this[int n, int r]
{
get
{
if (n < 0 || n >= fact.Length || r < 0 || r > n) return 0;
return fact[n] * ifact[n - r] * ifact[r];
}
}
public ModInt RepeatedCombination(int n, int k)
{
if (k == 0) return 1;
return this[n + k - 1, k];
}
}
#endregion
}
namespace CompLib.Collections.Generic
{
using System;
using System.Diagnostics;
public class SegmentTree
{
// 見かけ上の大きさ、実際の大きさ
private readonly int _n, _size;
private T[] _array;
private T _identity;
private Func _operation;
public SegmentTree(int n, Func operation, T identity)
{
_n = n;
_size = 1;
while (_size < _n)
{
_size *= 2;
}
_identity = identity;
_operation = operation;
_array = new T[_size * 2];
for (int i = 1; i < _size * 2; i++)
{
_array[i] = _identity;
}
}
public SegmentTree(T[] a, Func operation, T identity)
{
_n = a.Length;
_size = 1;
while (_size < _n)
{
_size *= 2;
}
_identity = identity;
_operation = operation;
_array = new T[_size * 2];
for (int i = 0; i < a.Length; i++)
{
_array[i + _size] = a[i];
}
for (int i = a.Length; i < _size; i++)
{
_array[i + _size] = identity;
}
for (int i = _size - 1; i >= 1; i--)
{
_array[i] = operation(_array[i * 2], _array[i * 2 + 1]);
}
}
///
/// A[i]をnに更新 O(log N)
///
///
///
public void Update(int i, T n)
{
Debug.Assert(0 <= i && i < _n);
i += _size;
_array[i] = n;
while (i > 1)
{
i /= 2;
_array[i] = _operation(_array[i * 2], _array[i * 2 + 1]);
}
}
///
/// A[left] op A[left+1] ... op A[right-1]を求める
///
///
///
///
public T Query(int left, int right)
{
Debug.Assert(0 <= left && left <= right && right <= _n);
T sml = _identity;
T smr = _identity;
left += _size;
right += _size;
while (left < right)
{
if ((left & 1) != 0) sml = _operation(sml, _array[left++]);
if ((right & 1) != 0) smr = _operation(_array[--right], smr);
left >>= 1;
right >>= 1;
}
return _operation(sml, smr);
}
///
/// op(a[0],a[1],...,a[n-1])を返します
///
///
public T All()
{
return _array[1];
}
///
/// f(op(a[l],a[l+1],...a[r-1])) = trueとなる最大のrを返します
///
///
///
///
public int MaxRight(int l, Func f)
{
Debug.Assert(0 <= l && l <= _n);
#if DEBUG
Debug.Assert(f(_identity));
#endif
if (l == _n) return _n;
l += _size;
T sm = _identity;
do
{
while (l % 2 == 0) l >>= 1;
if (!f(_operation(sm, _array[l])))
{
while (l < _size)
{
l <<= 1;
if (f(_operation(sm, _array[l])))
{
sm = _operation(sm, _array[l]);
l++;
}
}
return l - _size;
}
sm = _operation(sm, _array[l]);
l++;
} while ((l & -l) != l);
return _n;
}
///
/// f(op(a[l],a[l+1],...a[r-1])) = trueとなる最小のlを返します
///
///
///
///
public int MinLeft(int r, Func f)
{
Debug.Assert(0 <= r && r <= _n);
#if DEBUG
Debug.Assert(f(_identity));
#endif
if (r == 0) return 0;
r += _size;
T sm = _identity;
do
{
r--;
while (r > 1 && (r % 2 != 0)) r >>= 1;
if (!f(_operation(_array[r], sm)))
{
while (r < _size)
{
r = (2 * r + 1);
if (f(_operation(_array[r], sm)))
{
sm = _operation(_array[r], sm);
r--;
}
}
return r + 1 - _size;
}
sm = _operation(_array[r], sm);
} while ((r & -r) != r);
return 0;
}
public T this[int i]
{
set { Update(i, value); }
get
{
Debug.Assert(0 <= i && i < _n);
return _array[i + _size];
}
}
}
}
namespace CompLib.Util
{
using System;
using System.Linq;
class Scanner
{
private string[] _line;
private int _index;
private const char Separator = ' ';
public Scanner()
{
_line = new string[0];
_index = 0;
}
public string Next()
{
if (_index >= _line.Length)
{
string s;
do
{
s = Console.ReadLine();
} while (s.Length == 0);
_line = s.Split(Separator);
_index = 0;
}
return _line[_index++];
}
public string ReadLine()
{
_index = _line.Length;
return Console.ReadLine();
}
public int NextInt() => int.Parse(Next());
public int NextInt1() => NextInt() - 1;
public long NextLong() => long.Parse(Next());
public double NextDouble() => double.Parse(Next());
public decimal NextDecimal() => decimal.Parse(Next());
public char NextChar() => Next()[0];
public char[] NextCharArray() => Next().ToCharArray();
public string[] Array()
{
string s = Console.ReadLine();
_line = s.Length == 0 ? new string[0] : s.Split(Separator);
_index = _line.Length;
return _line;
}
public int[] IntArray() => Array().Select(int.Parse).ToArray();
public int[] IntArray1() => Array().Select(s => int.Parse(s) - 1).ToArray();
public long[] LongArray() => Array().Select(long.Parse).ToArray();
public double[] DoubleArray() => Array().Select(double.Parse).ToArray();
public decimal[] DecimalArray() => Array().Select(decimal.Parse).ToArray();
}
}