use std::io::Write; use std::collections::*; type Map = BTreeMap; type Set = BTreeSet; type Deque = VecDeque; fn run() { input! { n: usize, e: [(usize1, usize1); n - 1], } let mut g = vec![vec![]; n]; for (a, b) in e { g[a].push(b); g[b].push(a); } let mut topo = vec![0]; for i in 0..n { let v = topo[i]; for u in g[v].clone() { g[u].retain(|p| *p != v); topo.push(u); } } let mut dp = vec![(M::zero(), M::zero(), M::zero()); n]; for &v in topo.iter().rev() { let mut val = (M::one(), M::zero(), M::zero()); for &u in g[v].iter() { let (a, b, c) = dp[u]; val = (val.0 * (b + c), val.0 * (a + b) + val.1 * (b + c), val.1 * (a + b) + val.2 * (b + c)); } dp[v] = val; } let ans = dp[0].1 + dp[0].2; println!("{}", ans); } fn main() { run(); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin Rerooting ---------- pub trait RerootingOperator { type Value: Clone; type Edge: Clone; fn init(&mut self, v: usize) -> Self::Value; fn merge(&mut self, p: &Self::Value, c: &Self::Value, e: &Self::Edge) -> Self::Value; } pub struct Rerooting { manager: R, size: usize, edge: Vec<(usize, usize, R::Edge, R::Edge)>, } impl Rerooting { pub fn new(size: usize, manager: R) -> Self { assert!(size > 0 && size < 10usize.pow(8)); Rerooting { manager: manager, size: size, edge: vec![], } } pub fn add_edge(&mut self, a: usize, b: usize, cost: R::Edge) { assert!(a < self.size && b < self.size && a != b); self.add_edge_bi(a, b, cost.clone(), cost); } pub fn add_edge_bi(&mut self, a: usize, b: usize, ab: R::Edge, ba: R::Edge) { assert!(a < self.size && b < self.size && a != b); self.edge.push((a, b, ab, ba)); } pub fn solve(&mut self) -> Vec { let size = self.size; let mut graph = vec![vec![]; size]; for e in self.edge.iter() { graph[e.0].push((e.1, e.2.clone())); graph[e.1].push((e.0, e.3.clone())); } let root = 0; let mut topo = vec![root]; let mut parent = vec![root; size]; let mut parent_edge: Vec> = (0..size).map(|_| None).collect(); for i in 0..size { let v = topo[i]; let child = std::mem::take(&mut graph[v]); for e in child.iter() { let k = graph[e.0].iter().position(|e| e.0 == v).unwrap(); let c = graph[e.0].remove(k).1; parent_edge[e.0] = Some(c); parent[e.0] = v; topo.push(e.0); } graph[v] = child; } let manager = &mut self.manager; let mut down: Vec<_> = (0..size).map(|v| manager.init(v)).collect(); for &v in topo.iter().rev() { for e in graph[v].iter() { down[v] = manager.merge(&down[v], &down[e.0], &e.1); } } let mut up: Vec<_> = (0..size).map(|v| manager.init(v)).collect(); let mut stack = vec![]; for &v in topo.iter() { if let Some(e) = parent_edge[v].take() { let ini = manager.init(v); up[v] = manager.merge(&ini, &up[v], &e); } if !graph[v].is_empty() { stack.push((graph[v].as_slice(), up[v].clone())); while let Some((g, val)) = stack.pop() { if g.len() == 1 { up[g[0].0] = val; } else { let m = g.len() / 2; let (a, b) = g.split_at(m); for a in [(a, b), (b, a)].iter() { let mut p = val.clone(); for a in a.0.iter() { p = manager.merge(&p, &down[a.0], &a.1); } stack.push((a.1, p)); } } } } for e in graph[v].iter() { up[v] = manager.merge(&up[v], &down[e.0], &e.1); } } up } } // ---------- end Rerooting ---------- // ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo; impl Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt(u32, PhantomData); impl Clone for ModInt { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl Copy for ModInt {} impl Add for ModInt { type Output = ModInt; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sub for ModInt { type Output = ModInt; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for ModInt { type Output = ModInt; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Neg for ModInt { type Output = ModInt; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl std::fmt::Display for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::fmt::Debug for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl Default for ModInt { fn default() -> Self { Self::zero() } } impl std::str::FromStr for ModInt { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt { fn from(val: usize) -> ModInt { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl From for ModInt { fn from(val: u64) -> ModInt { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl From for ModInt { fn from(val: i64) -> ModInt { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl ModInt { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl ModInt { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc { fact: Vec>, ifact: Vec>, inv: Vec>, } impl Precalc { pub fn new(n: usize) -> Precalc { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt>;