class Integer def mod_inverse(mod) self.pow(mod - 2, mod) end end class ModInteger attr_reader :fac, :inv, :finv, :mod MOD = 10 ** 9 + 7 def initialize(n, mod: MOD) @mod = mod @fac = [1, 1] @inv = [1, 1] @finv = [1, 1] (2..n).each do |i| @fac[i] = fac[i - 1] * i % mod @inv[i] = mod - inv[mod % i] * (mod / i) % mod @finv[i] = finv[i - 1] * inv[i] % mod end end def combination(n, k) return 0 if n < k return 0 if n < 0 || k < 0 fac[n] * (finv[k] * finv[n - k] % mod) % mod end def permutation(n, k = n) return 0 if n < k return 0 if n < 0 || k < 0 fac[n] * (finv[n - k] % mod) % mod end def repeated_combination(n, k) combination(n + k - 1, k) end end N, M, P = gets.split.map(&:to_i) V = gets.split.map(&:to_i).sort.reverse MOD = 10 ** 9 + 7 mi = ModInteger.new(N + M + 1) ans = 0 sum = 0 ng_rate = P * 100.mod_inverse(MOD) ok_rate = (100 - P) * 100.mod_inverse(MOD) 1.upto(N - 1) do |n| sum += V[n - 1] r = ok_rate.pow(n, MOD) * ng_rate.pow(M - 1, MOD) * ng_rate ans += (sum * r * mi.combination(n + M - 1, n)) % MOD ans %= MOD end sum = V.sum 0.upto(M - 1) do |m| r = ok_rate.pow(N - 1, MOD) * ng_rate.pow(m, MOD) * ok_rate ans += (sum * r * mi.combination(N + m - 1, m)) % MOD ans %= MOD end puts ans