#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include using namespace std; using namespace atcoder; typedef long long ll; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define repr(i, n) for (int i = (int)(n) - 1; i >= 0; i--) #define repk(i, k, n) for (int i = k; i < (int)(n); i++) #define all(v) v.begin(), v.end() #define mod1 1000000007 #define mod2 998244353 #define vi vector #define vs vector #define vc vector #define vl vector #define vvi vector> #define vvc vector> #define vvl vector> #define vvvi vector>> #define vvvl vector>> #define pii pair #define pil pair #define pli pair #define pll pair #define vpii vector> #define vpll vector> #define vvpii vector>> #define vvpll vector>> template void debug(T e){ cerr << e << endl; } template void debug(vector &v){ rep(i, v.size()){ cerr << v[i] << " "; } cerr << endl; } template void debug(vector> &v){ rep(i, v.size()){ rep(j, v[i].size()){ cerr << v[i][j] << " "; } cerr << endl; } } template void debug(vector> &v){ rep(i,v.size()){ cerr << v[i].first << " " << v[i].second << endl; } } template void debug(set &st){ for (auto itr = st.begin(); itr != st.end(); itr++){ cerr << *itr << " "; } cerr << endl; } template void debug(multiset &ms){ for (auto itr = ms.begin(); itr != ms.end(); itr++){ cerr << *itr << " "; } cerr << endl; } template void debug(map &mp){ for (auto itr = mp.begin(); itr != mp.end(); itr++){ cerr << itr->first << " " << itr->second << endl; } } void debug_out(){ cerr << endl; } template void debug_out(Head H, Tail... T){ cerr << H << " "; debug_out(T...); } ll my_pow(ll x, ll n, ll mod){ // 繰り返し二乗法.x^nをmodで割った余り. ll ret; if (n == 0){ ret = 1; } else if (n % 2 == 1){ ret = (x * my_pow((x * x) % mod, n / 2, mod)) % mod; } else{ ret = my_pow((x * x) % mod, n / 2, mod); } return ret; } int main(){ ll N,K; cin >> N >> K; vl factorial(400005, 0); factorial[0] = 1; for (ll i = 0; i < 400004; i++){ factorial[i + 1] = (factorial[i] * (i + 1)) % mod2; } vl factorial_inv(400005, 0); for (ll i = 0; i <= 400004; i++){ factorial_inv[i] = my_pow(factorial[i], mod2 - 2, mod2); } ll ans = 0; for (ll i = 1; i <= N - 1; i++){ ans = (ans + (my_pow(i, K, mod2) * ((factorial[N - 1] * ((factorial_inv[i] * factorial_inv[N - 1 - i]) % mod2)) % mod2)) % mod2) % mod2; } cout << ans << endl; }