#include #include #include #include template< class S, // 要素の型 S element, // 元 class T, // 2項演算子 class U // 逆元 > struct Group { S m_val; Group() :m_val(element) {} Group(S val) :m_val(val) {} Group inverse()const { return U()(m_val); } Group binaryOperation(const Group& g)const { return T()(m_val, g.m_val); } }; template struct F_A_Inv { auto operator()(P x)const { return -x; } }; template struct F_A_Bin { auto operator()(P x, P y)const { return x + y; } }; template using AdditiveGroup = Group, F_A_Inv

>; template > class Accumulation { using S = decltype(Group().m_val); const int size; std::vector sumList; public: Accumulation() = delete; Accumulation(const std::vector& v) :size(v.size()), sumList(size + 1) { for(int i = 0; i < size; ++i) { sumList[i + 1] = sumList[i].binaryOperation(v[i]); } } Accumulation(const std::vector& v) :Accumulation(std::vector(v.begin(), v.end())) { } auto get(int n) { return sumList[n + 1].m_val; } auto get(int l, int r) { if(r < l) { return Group().m_val; } l = std::max(l, 0); r = std::min(r, size - 1); return sumList[r + 1].binaryOperation(sumList[l].inverse()).m_val; } }; using ll = long long; using std::cout; using std::cin; constexpr char endl = '\n'; struct F_inv { auto operator()(ll x) { return x; } }; struct F_xor { auto operator()(ll x, ll y) { return x ^ y; } }; using G = Group; signed main() { ll n, k; cin >> n >> k; std::vector a; a.reserve(n); for(int _ = 0; _ < n; ++_) { ll x; cin >> x; a.emplace_back(x); } auto acc = Accumulation(a); std::unordered_set st; for(int i = 0; i < n; ++i) { st.emplace(acc.get(i) ^ k); } if(st.find(0) != st.end()) { cout << "Yes" << endl; return 0; } for(int i = 0; i < n; ++i) { if(st.find(acc.get(i)) != st.end()) { cout << "Yes" << endl; return 0; } } cout << "No" << endl; }