class UnionFindVerSize(): def __init__(self, N): self._parent = [n for n in range(0, N)] self._size = [1] * N self.group = N def find_root(self, x): if self._parent[x] == x: return x self._parent[x] = self.find_root(self._parent[x]) stack = [x] while self._parent[stack[-1]]!=stack[-1]: stack.append(self._parent[stack[-1]]) for v in stack: self._parent[v] = stack[-1] return self._parent[x] def unite(self, x, y): gx = self.find_root(x) gy = self.find_root(y) if gx == gy: return self.group -= 1 if self._size[gx] < self._size[gy]: self._parent[gx] = gy self._size[gy] += self._size[gx] else: self._parent[gy] = gx self._size[gx] += self._size[gy] def get_size(self, x): return self._size[self.find_root(x)] def is_same_group(self, x, y): return self.find_root(x) == self.find_root(y) import sys,random from collections import deque def solve(N,M,_E): E = [(u-1,v-1) for u,v in _E] uf = UnionFindVerSize(N) D = [0] * N for u,v in E[::-1]: pu,pv = uf.find_root(u),uf.find_root(v) if pu!=pv: uf.unite(pu,pv) D[uf.find_root(pu)] = max(D[pu],D[pv]) + 1 else: D[pu] += 1 return max(D) N,M = map(int,input().split()) E = [tuple(map(int,input().split())) for _ in range(M)] print(solve(N,M,E))