#include using namespace std; using int64 = long long; const int mod = 998244353; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for (int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for (T &in: v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for (auto &e: t) fill_v(e, v); } template< typename F > struct FixPoint: F { explicit FixPoint(F &&f): F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } #line 1 "math/combinatorics/montgomery-mod-int.hpp" /** * @brief Montgomery ModInt */ template< uint32_t mod, bool fast = false > struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for(i32 i = 0; i < 4; i++) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 x; MontgomeryModInt() : x{} {} MontgomeryModInt(const i64 &a) : x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {} static constexpr u32 reduce(const u64 &b) { return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32); } mint &operator+=(const mint &p) { if(i32(x += p.x - 2 * mod) < 0) x += 2 * mod; return *this; } mint &operator-=(const mint &p) { if(i32(x -= p.x) < 0) x += 2 * mod; return *this; } mint &operator*=(const mint &p) { x = reduce(u64(x) * p.x); return *this; } mint &operator/=(const mint &p) { *this *= p.inverse(); return *this; } mint operator-() const { return mint() - *this; } mint operator+(const mint &p) const { return mint(*this) += p; } mint operator-(const mint &p) const { return mint(*this) -= p; } mint operator*(const mint &p) const { return mint(*this) *= p; } mint operator/(const mint &p) const { return mint(*this) /= p; } bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); } bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); } u32 get() const { u32 ret = reduce(x); return ret >= mod ? ret - mod : ret; } mint pow(u64 n) const { mint ret(1), mul(*this); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &p) { return os << p.get(); } friend istream &operator>>(istream &is, mint &a) { i64 t; is >> t; a = mint(t); return is; } static u32 get_mod() { return mod; } }; using modint = MontgomeryModInt< mod >; const int MAX_A = 1e6; vector< int > fs[MAX_A + 1]; int main() { int N; cin >> N; vector< int > A(N); cin >> A; for(int i = 2; i <= MAX_A; i++) { if(fs[i].empty()) { for(int j = i; j <= MAX_A; j += i) { fs[j].emplace_back(i); } } } vector< modint > dp(MAX_A + 1); modint ans = 0; for(int i = 0; i < N; i++) { auto& vs = fs[A[i]]; modint ret = 1; MFP([&](auto calc, int idx, int mul, bool f) -> void { if(idx == vs.size()) { if(mul == 1) return; if(f) ret += dp[mul]; else ret -= dp[mul]; } else { calc(idx + 1, mul * vs[idx], f ^ 1); calc(idx + 1, mul, f); } }) (0, 1, 0); ans += ret; MFP([&](auto calc, int idx, int mul) -> void { if(idx == vs.size()) { dp[mul] += ret; } else { calc(idx + 1, mul * vs[idx]); calc(idx + 1, mul); } }) (0, 1); } cout << ans << endl; }