from collections import defaultdict, deque from heapq import heappush, heappop from itertools import permutations, accumulate import sys import math import bisect def LI(): return [int(x) for x in sys.stdin.readline().split()] def I(): return int(sys.stdin.readline()) def IR(n): return [I() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] sys.setrecursionlimit(1000000) mod = 998244353 def gcd(a, b): while a: a, b = b%a, a return b test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23] def is_prime(n): if n == 2: return 1 if n == 1 or n%2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb for a in test_numbers: if a == n: continue x = pow(a,d,n) r = 0 if x == 1: continue while x != m: x = pow(x,2,n) if x == 1 or r == s: return 0 r += 1 return 1 def find_prime_factor(n): m = 2*int(2**(((n.bit_length()-1)>>2)/2)) for c in range(1,n): f = lambda a: (pow(a,2,n)+c)%n y = 0 g = q = r = 1 while g == 1: x = y for _ in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y)%n g = gcd(q,n) k += m r <<= 1 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y),n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: n = g def factorize(n): res = {} for p in range(2,1000): if p*p > n: break if n%p: continue s = 0 while n%p == 0: n //= p s += 1 res[p] = s while not is_prime(n) and n > 1: p = find_prime_factor(n) s = 0 while n%p == 0: n //= p s += 1 res[p] = s if n > 1: res[n] = 1 return res def main(): n = I() a = LI() ans = 0 su = defaultdict(lambda: 0) for i in a: f = factorize(i) s = 1 for i in f.keys(): s += su[i] if s >= mod: s -= mod for i in f.keys(): su[i] += s if su[i] >= mod: su[i] -= mod ans += s if ans >= mod: ans -= mod print(ans) return if __name__ == "__main__": main()