#include using namespace std; using ll = long long; using ld = long double; using pll = pair; using tlll = tuple; constexpr ll INF = 1LL << 60; template bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;} template bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;} ll safemod(ll A, ll M) {ll res = A % M; if (res < 0) res += M; return res;} ll divfloor(ll A, ll B) {if (B < 0) {return divfloor(-A, -B);} return (A - safemod(A, B)) / B;} ll divceil(ll A, ll B) {if (B < 0) {return divceil(-A, -B);} return divfloor(A + B - 1, B);} ll pow_ll(ll A, ll B) {if (A == 0 || A == 1) {return A;} if (A == -1) {return B & 1 ? -1 : 1;} ll res = 1; for (int i = 0; i < B; i++) {res *= A;} return res;} ll logfloor(ll A, ll B) {assert(A >= 2); ll res = 0; for (ll tmp = 1; tmp <= B / A; tmp *= A) {res++;} return res;} ll logceil(ll A, ll B) {assert(A >= 2); ll res = 0; for (ll tmp = 1; tmp < B; tmp *= A) {res++;} return res;} ll arisum_ll(ll a, ll d, ll n) { return n * a + (n & 1 ? ((n - 1) >> 1) * n : (n >> 1) * (n - 1)) * d; } ll arisum2_ll(ll a, ll l, ll n) { return n & 1 ? ((a + l) >> 1) * n : (n >> 1) * (a + l); } ll arisum3_ll(ll a, ll l, ll d) { assert((l - a) % d == 0); return arisum2_ll(a, l, (l - a) / d + 1); } template void unique(vector &V) {V.erase(unique(V.begin(), V.end()), V.end());} template void sortunique(vector &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());} #define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) template void printvec(const vector &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';} template void printvect(const vector &V) {for (auto v : V) cout << v << '\n';} template void printvec2(const vector> &V) {for (auto &v : V) printvec(v);} //* #include using namespace atcoder; using mint = modint998244353; //using mint = modint1000000007; //using mint = modint; //*/ class eratosthenes { public: int N; vector isprime; vector primecount; vector primes; vector minfactor; vector mobius; eratosthenes(int n) { N = n; isprime.assign(n + 1, true); primecount.assign(n + 1, 0); minfactor.assign(n + 1, -1); mobius.assign(n + 1, 1); isprime[0] = false, isprime[1] = false; minfactor[1] = 1; for (int p = 2; p <= n; p++) { primecount[p] = primecount[p - 1]; if (!isprime[p]) continue; primecount[p]++; primes.emplace_back(p); minfactor[p] = p; mobius[p] = -1; for (int k = 2, q = 2 * p; q <= n; k++, q += p) { isprime[q] = false; if (minfactor[q] == -1) minfactor[q] = p; if (k % p == 0) mobius[q] = 0; else mobius[q] = -mobius[q]; } } } vector factorize(ll n) { vector ret; while (n > 1) { int p = minfactor[n]; int e = 0; while (minfactor[n] == p) { n /= p; e++; } ret.emplace_back(make_pair(p, e)); } return ret; } ll L; vector> primefactors2; void rangesieve(ll l, ll r) { L = l; ll R = r; primefactors2.resize(R - L + 1); for (ll p = 2; p * p <= R; p++) { if (!isprime[p]) continue; for (ll v = divceil(L, p) * p; v <= R; v += p) { primefactors2[v - L].emplace_back(p); } } } vector factorize2(ll v) { vector ret; ll vv = v; const auto &pfs = primefactors2[v - L]; for (auto p : pfs) { ll e = 0; while (vv % p == 0) { vv /= p; e++; } ret.emplace_back(make_pair(p, e)); } if (vv > 1) ret.emplace_back(make_pair(vv, 1)); return ret; } }; int main() { ll M; cin >> M; if (M == 0) { cout << "1\n1\n"; return 0; } eratosthenes er(100000); vector A; ll j = 0; for (ll i = 40; i >= 0; i--) { if (M & (1LL << i)) { for (ll k = 0; k < i; k++) { A.push_back(er.primes.at(j)); } j++; A.push_back(er.primes.at(j)); j++; } } ll N = A.size(); { ll k = N - 1; for (ll i = 0; i < N - 1; i++) { if (A.at(i) == A.at(i + 1)) { while (A.at(i) * er.primes.at(k) > 100000) { k--; } A.at(i) *= er.primes.at(k); k--; } } } cout << N << endl; printvec(A); /* set st; for (auto a : A) st.emplace(a); assert(st.size() == N); //*/ /* ll ans = 0; for (ll b = 0; b < (1LL << N); b++) { ll g = 0; for (ll i = 0; i < N; i++) { if (b & (1LL << i)) g = gcd(g, A.at(i)); } if (g >= 2) ans++; } cout << ans << endl; //*/ }