from math import gcd def enumerate_primes(n): if n <= 1: return [] A = [1, 7, 11, 13, 17, 19, 23, 29] thres = (n + 29) // 30 sieve = [255] * (thres + int(n ** 0.5) + 10) ntoi = lambda i: (i >> 2) + (not (~i&19)) sieve[0] ^= 1 i = 0 flg = 1 while flg: if sieve[i] != 0: for j in range(8): if sieve[i] >> j & 1: p = i * 30 + A[j] if (p * p > n): flg = 0 continue q = [0] * 8 r = [0] * 8 s = 0 for k in range(8): x = p * (i * 30 + A[k]) q[k] = x // 30 r[k] = ntoi(x - 30 * q[k]) while q[0] + s < thres: sieve[q[0] + s] &= ~(1 << r[0]) sieve[q[1] + s] &= ~(1 << r[1]) sieve[q[2] + s] &= ~(1 << r[2]) sieve[q[3] + s] &= ~(1 << r[3]) sieve[q[4] + s] &= ~(1 << r[4]) sieve[q[5] + s] &= ~(1 << r[5]) sieve[q[6] + s] &= ~(1 << r[6]) sieve[q[7] + s] &= ~(1 << r[7]) s += p i += 1 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] for i in range(1, thres): for j in range(8): if sieve[i] >> j & 1: primes.append(i * 30 + A[j]) while primes[-1] > n: primes.pop() return primes m = int(input()) if m == 0: m += 998244353 A = [] primes = enumerate_primes(300)[:30] ind = 0 x = (1 << 30) - 1 while x > 0: if x > m: x >>= 1 continue m -= x p = primes[ind] y = p c = x.bit_length() B = [] while c > 0: ok = True for q in primes: if p != q and y % q == 0: ok = False break if ok: for a in A: if gcd(a, y) != 1: ok = False break if ok: c -= 1 B.append(y) y += p A += B ind += 1 print(len(A)) print(*A)