#WA ######################################## from heapq import heappush, heappop def dijkstra( G, s, INF=10 ** 18): """ https://tjkendev.github.io/procon-library/python/graph/dijkstra.html O((|E|+|V|)log|V|) V: 頂点数 G[v] = [(nod, cost)]: 頂点vから遷移可能な頂点(nod)とそのコスト(cost) s: 始点の頂点""" N=len(G) N+=1 dist = [INF] * N hp = [(0, s)] # (c, v) dist[s] = 0 while hp: c, v = heappop(hp) #vまで行くコストがc if dist[v] < c: continue for u, cost in G[v]: if max(dist[v] , cost) < dist[u]: dist[u] = max(dist[v] , cost) heappush(hp, (dist[u], u)) return dist ################################################## n=int(input()) x=[0] y=[0] t=[0] for i in range(n): a,b,c=map(int,input().split()) x.append(a) y.append(b) t.append(c) def cost(i,j): if t[i]==t[j]: return (x[i]-x[j])**2+(y[i]-y[j])**2 else: ri2 = x[i] ** 2 + y[i] ** 2 rj2 = x[j] ** 2 + y[j] ** 2 return ri2+rj2-int((4*ri2*rj2)**0.5) root=[[] for i in range(n+5)] for i in range(1,n+1): for j in range(i+1,n+1): c=cost(i,j) root[i].append((j,c)) root[j].append((i,c)) print(dijkstra(root,1)[n])