import sys input = lambda: sys.stdin.readline().rstrip() class AVLNode: __slots__ = ('key', 'val', 'size', 'valsize', 'left', 'right', 'balance') def __init__(self, key, val): self.key = key self.val = val self.valsize = val self.size = 1 self.left = None self.right = None self.balance = 0 def __str__(self): if self.left is None and self.right is None: return f'key:{self.key, self.val, self.valsize, self.size}\n' return f'key:{self.key, self.val, self.valsize, self.size},\n left:{self.left},\n right:{self.right}\n' class AVLTreeMultiSet: __slots__ = ('node', '__iter') __LEFT, __RIGHT = 1, -1 def __init__(self, V=[]): self.node = None self.__build(V) def __build(self, V): for v in sorted(V): self.add(v, 1) def __rotate_L(self, node: AVLNode) -> AVLNode: u = node.left u.size = node.size u.valsize = node.valsize node.size -= 1 if u.left is None else u.left.size + 1 node.valsize -= u.val if u.left is None else u.left.valsize + u.val node.left = u.right u.right = node if u.balance == 1: u.balance = 0 node.balance = 0 else: u.balance = -1 node.balance = 1 return u def __rotate_R(self, node: AVLNode) -> AVLNode: u = node.right u.size = node.size u.valsize = node.valsize node.size -= 1 if u.right is None else u.right.size + 1 node.valsize -= u.val if u.right is None else u.right.valsize + u.val node.right = u.left u.left = node if u.balance == -1: u.balance = 0 node.balance = 0 else: u.balance = 1 node.balance = -1 return u def __update_balance(self, node: AVLNode) -> None: # nodeはnew_node if node.balance == 1: node.right.balance = -1 node.left.balance = 0 elif node.balance == -1: node.right.balance = 0 node.left.balance = 1 else: node.right.balance = 0 node.left.balance = 0 node.balance = 0 def __rotate_LR(self, node: AVLNode) -> AVLNode: # A E # / \ / \ # B C -> B A # /\ /\ /\ # D E D F1F2 C # /\ # F1 F2 # # node: A E = node.left.right F1 = E.left F2 = E.right E.left = node.left E.left.right = F1 E.right = node E.right.left = F2 E.left.size = 1 + (0 if E.left.right is None else E.left.right.size) + (0 if E.left.left is None else E.left.left.size) E.right.size = 1 + (0 if E.right.right is None else E.right.right.size) + (0 if E.right.left is None else E.right.left.size) E.size = E.left.size + E.right.size + 1 E.left.valsize = E.left.val + (0 if E.left.right is None else E.left.right.valsize) + (0 if E.left.left is None else E.left.left.valsize) E.right.valsize = E.right.val + (0 if E.right.right is None else E.right.right.valsize) + (0 if E.right.left is None else E.right.left.valsize) E.valsize = E.left.valsize + E.right.valsize + E.val self.__update_balance(E) return E def __rotate_RL(self, node: AVLNode) -> AVLNode: D = node.right.left F1 = D.left F2 = D.right D.right = node.right D.right.left = F2 D.left = node D.left.right = F1 D.right.size = 1 + (0 if D.right.left is None else D.right.left.size) + (0 if D.right.right is None else D.right.right.size) D.left.size = 1 + (0 if D.left.left is None else D.left.left.size) + (0 if D.left.right is None else D.left.right.size) D.size = D.right.size + D.left.size + 1 D.right.valsize = D.right.val + (0 if D.right.left is None else D.right.left.valsize) + (0 if D.right.right is None else D.right.right.valsize) D.left.valsize = D.left.val + (0 if D.left.left is None else D.left.left.valsize) + (0 if D.left.right is None else D.left.right.valsize) D.valsize = D.right.valsize + D.left.valsize + D.val self.__update_balance(D) return D def __discard(self, key) -> bool: '''Discard node of key from self. / O(logN)''' path = [] node = self.node while node is not None: if key < node.key: path.append((node, self.__LEFT, 0)) node = node.left elif key > node.key: path.append((node, self.__RIGHT, 0)) node = node.right else: break if node.left is not None: path.append((node, self.__LEFT, 0)) lmax = node.left while lmax.right is not None: path.append((lmax, self.__RIGHT, 1)) lmax = lmax.right node.key = lmax.key node.val = lmax.val lmax_val = lmax.val node = lmax cnode = node.right if node.left is None else node.left if path: pnode, di, _ = path[-1] if di == self.__LEFT: pnode.left = cnode else: pnode.right = cnode else: self.node = cnode return True while path: new_node = None pnode, di, flag = path.pop() pnode.balance -= di pnode.size -= 1 pnode.valsize -= lmax_val if flag else 1 if pnode.balance == 2: if pnode.left.balance < 0: new_node = self.__rotate_LR(pnode) else: new_node = self.__rotate_L(pnode) elif pnode.balance == -2: if pnode.right.balance > 0: new_node = self.__rotate_RL(pnode) else: new_node = self.__rotate_R(pnode) elif pnode.balance != 0: break if new_node is not None: if len(path) == 0: self.node = new_node return gnode, gdir, _ = path[-1] if gdir == self.__LEFT: gnode.left = new_node else: gnode.right = new_node if new_node.balance != 0: break while path: pnode, _, flag = path.pop() pnode.size -= 1 pnode.valsize -= lmax_val if flag else 1 return True def discard(self, key, cnt=1) -> bool: path = [] node = self.node while node is not None: if key < node.key: path.append(node) node = node.left elif key > node.key: path.append(node) node = node.right else: path.append(node) break else: return False if cnt >= node.val: cnt = node.val - 1 path[-1].val -= cnt while path: pnode = path.pop() pnode.valsize -= cnt if node.val == 1: self.__discard(key) else: path[-1].val -= cnt while path: pnode = path.pop() pnode.valsize -= cnt return True def __getval(self, key): node = self.node while node: if node.key == key: return node.val elif key < node.key: node = node.left else: node = node.right raise KeyError def add(self, key, cnt=1) -> None: '''add key cnt times. / O(logN)''' if self.node is None: self.node = AVLNode(key, cnt) return pnode = self.node path = [] while pnode is not None: if key < pnode.key: path.append((pnode, self.__LEFT)) pnode = pnode.left elif key > pnode.key: path.append((pnode, self.__RIGHT)) pnode = pnode.right else: pnode.val += cnt pnode.valsize += cnt while path: pnode, _ = path.pop() pnode.valsize += cnt return pnode, di = path[-1] if di == self.__LEFT: pnode.left = AVLNode(key, cnt) else: pnode.right = AVLNode(key, cnt) while path: new_node = None pnode, di = path.pop() pnode.size += 1 pnode.valsize += cnt pnode.balance += di if pnode.balance == 0: break if pnode.balance == 2: # pnodeの左部分木が茂りすぎ if pnode.left.balance == -1: # LR2重回転: nodeの右側が茂っている場合 new_node = self.__rotate_LR(pnode) else: # LL1重回転: nodeの左側が茂っている場合 new_node = self.__rotate_L(pnode) break elif pnode.balance == -2: # pnodeの右部分木が茂りすぎ if pnode.right.balance == 1: # RL2重回転: nodeの左側が茂っている場合 new_node = self.__rotate_RL(pnode) else: # RR1重回転: nodeの右側が茂っている場合 new_node = self.__rotate_R(pnode) break # else: 最初にpnode.balanceを更新したので、何もせずcontinueしてOK if new_node is not None: if path: gnode, gdi = path.pop() gnode.size += 1 gnode.valsize += cnt if gdi == self.__LEFT: gnode.left = new_node else: gnode.right = new_node else: self.node = new_node while path: pnode, _ = path.pop() pnode.size += 1 pnode.valsize += cnt return def count(self, key) -> int: pass return self.__getval(key) def le(self, key): '''Find the largest element <= key, or None if it doesn't exist. / O(logN)''' if key in self: return key indx = self.index(key) return self.__getitem__(indx-1) if 0 <= indx-1 < self.__len__() else None def lt(self, key): '''Find the largest element < key, or None if it doesn't exist. / O(logN)''' indx = self.index(key) return self.__getitem__(indx-1) if 0 <= indx-1 < self.__len__() else None def ge(self, key): '''Find the smallest element >= key, or None if it doesn't exist. / O(logN)''' if key in self: return key indx = self.index_right(key) return self.__getitem__(indx) if 0 <= indx < self.__len__() else None def gt(self, key): '''Find the smallest element > key, or None if it doesn't exist. / O(logN)''' indx = self.index_right(key) return self.__getitem__(indx) if 0 <= indx < self.__len__() else None def index(self, key) -> int: '''Count the number of elements < key. / O(logN)''' indx = 0 node = self.node while node: if node.key == key: indx += 0 if node.left is None else node.left.valsize break elif key < node.key: node = node.left else: indx += node.val if node.left is None else node.left.valsize + node.val node = node.right return indx def index_right(self, key) -> int: '''Count the number of elements <= key. / O(logN)''' indx = 0 node = self.node while node: if node.key == key: indx += (0 if node.left is None else node.left.valsize) + node.val break elif key < node.key: node = node.left else: indx += (0 if node.left is None else node.left.valsize) + node.val node = node.right return indx def pop(self, p=-1): '''Return and Remove max element or a[p]. / O(logN)''' if p < 0: p += self.__len__() assert 0 <= p < self.__len__() x = self.__getitem__(p) self.discard(x) return x def popleft(self): '''Return and Remove min element. / O(logN)''' return self.pop(0) def items(self): indx = 0 while indx < self.__len_tree(): yield self.__kth_elm_tree(indx) indx += 1 def keys(self): indx = 0 while indx < self.__len_tree(): yield self.__kth_elm_tree(indx)[0] indx += 1 def values(self): indx = 0 while indx < self.__len_tree(): yield self.__kth_elm_tree(indx)[1] indx += 1 def __getitem__(self, k): return self.__kth_elm_set(k)[0] def __kth_elm_set(self, k) -> tuple: if k < 0: k += self.__len__() now = 0 node = self.node while node is not None: s = now + node.left.valsize if node.left is not None else now t = s + node.val if s <= k < t: return node.key, node.val elif t <= k: now = t node = node.right else: node = node.left raise IndexError def __kth_elm_tree(self, k) -> tuple: if k < 0: k += self.__len_tree() now = 0 node = self.node while node is not None: t = now + node.left.size if node.left is not None else now if t == k: return node.key, node.val elif t < k: now = t + 1 node = node.right else: node = node.left raise IndexError def __contains__(self, key): node = self.node while node: if node.key == key: return True elif key < node.key: node = node.left else: node = node.right return False def __iter__(self): self.__iter = 0 return self def __next__(self): if self.__iter == self.__len__(): raise StopIteration res = self.__kth_elm_set(self.__iter) self.__iter += 1 return res def __reversed__(self): for i in range(self.__len__()): yield self.__kth_elm_set(-i-1) def __len_tree(self): return 0 if self.node is None else self.node.size def __len__(self): return 0 if self.node is None else self.node.valsize def __bool__(self): return True if self.node is not None else False def __str__(self): return '{' + ', '.join(map(lambda x: ', '.join([str(x[0])]*x[1]), self.items())) + '}' def show(self): return '{' + ', '.join(map(lambda x: f'{x[0]}: {x[1]}', self.items())) + '}' def __str__(self): return '{' + ', '.join(map(lambda x: ', '.join([str(x[0])]*x[1]), self.items())) + '}' def count_elm(self): return self.__len_tree() # ----------------------- # q, k = map(int, input().split()) avl = AVLTreeMultiSet() query = [list(map(int, input().split())) for _ in range(q)] for qu in query: if qu[0] == 1: avl.add(qu[1]) else: if len(avl) < k: print(-1) else: print(avl.pop(k-1))