#line 1 "Main.cpp" #include #include namespace nachia{ struct AdjacencyList{ public: struct AdjacencyListRange{ using iterator = typename std::vector::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } }; private: int mn; std::vector E; std::vector I; public: AdjacencyList(int n, std::vector> edges, bool rev){ mn = n; std::vector buf(n+1, 0); for(auto [u,v] : edges){ ++buf[u]; if(rev) ++buf[v]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; E.resize(buf[n]); for(int i=(int)edges.size()-1; i>=0; i--){ auto [u,v] = edges[i]; E[--buf[u]] = v; if(rev) E[--buf[v]] = u; } I = std::move(buf); } AdjacencyList(const std::vector>& edges = {}){ int n = mn = edges.size(); std::vector buf(n+1, 0); for(int i=0; i cdep; std::vector cp; std::vector cbfs; int maxdep; CentroidDecomposition(AdjacencyList edges) : E(std::move(edges)){ n = E.num_vertices(); std::vector Z(n, 1); { std::vector P(n, -1); std::vector I = { 0 }; for(int i=0; i<(int)I.size(); i++){ int p = I[i]; for (int e : E[p]) if (P[p] != e) { P[e] = p; I.push_back(e); } } for (int i=n-1; i>=1; i--) Z[P[I[i]]] += Z[I[i]]; } cp.assign(n, -1); cdep.assign(n, 0); std::vector> I = { {0,-1} }; for(int i=0; i<(int)I.size(); i++){ int s = I[i].first; int par = I[i].second; while (true) { int nx = -1; for (int e : E[s]) if (Z[e] * 2 > Z[s]) nx = e; if (nx == -1) break; Z[s] -= Z[nx]; Z[nx] += Z[s]; s = nx; } cbfs.push_back(s); Z[s] = 0; if (par != -1) { cdep[s] = cdep[par] + 1; cp[s] = par; } for (int e : E[s]) if (Z[e] != 0) { I.push_back(std::make_pair(e, s)); } } maxdep = 0; for (int a : cdep) maxdep = std::max(maxdep, a); } struct BFSUnit { std::vector I; std::vector P; }; BFSUnit bfs_layer(int s, int layer) { BFSUnit res; if (cdep[s] < layer) return res; res.I.push_back(s); res.P.push_back(-1); for(int i=0; i<(int)res.I.size(); i++){ int p = res.I[i]; for (int e : E[p]) if (res.P[i] != e) { if (cdep[e] < layer) continue; res.I.push_back(e); res.P.push_back(p); } } return res; } }; } // namespace nachia #line 2 "nachia\\math\\modulo-primitive-root.hpp" #line 5 "nachia\\math\\modulo-primitive-root.hpp" namespace nachia{ template struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool examine_val(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int get_val(){ for(unsigned int x=2; x #include #include using namespace std; using i64 = long long; using u64 = unsigned long long; using i32 = int; using u32 = unsigned int; #define rep(i,n) for(int i=0; i; void NTT(vector& A){ Modint g = nachia::PrimitiveRoot::get_val(); constexpr unsigned int MOD = Modint::mod(); int N = 1; while (N < (int)A.size()) N *= 2; static vector exp_i_revbit_diff = { g.pow((MOD - 1) >> 2) }; for(int i=exp_i_revbit_diff.size(); (1<<(i+1))> (i+2)) * 3); exp_i_revbit_diff.push_back(diffdiff); } for (int i = 1; i < N; i <<= 1) { Modint q = 1; int maxk = N / i / 2; for (int j = 0; j < i; j++) { int off = j * maxk * 2; for (int k = off; k < off + maxk; k++) { Modint l = A[k]; Modint r = A[k + maxk] * q; A[k] = l + r; A[k + maxk] = l - r; } if(j+1 != i) for(int d=0; ; d++) if(!(j&(1<> 1; k > (i ^= k); k >>= 1); } } const u32 MOD = 998244353; const u32 NTTzeta = 3; int N; vector Q; nachia::AdjacencyList E; Modint k0; vector inv_mod; vector C; vector> nttC; vector inv_ntt_size; vector ans; vector bfsbuf_dist; void get_bfsbuf_dist(nachia::CentroidDecomposition::BFSUnit tree){ bfsbuf_dist[tree.I.front()] = 0; for(int i=1; i<(int)tree.I.size(); i++){ bfsbuf_dist[tree.I[i]] = bfsbuf_dist[tree.P[i]] + 1; } } vector sigma(const vector& B){ int n = B.size() + 2; if(n >= 10){ int Z = 1, d = 0; while(Z < n){ Z *= 2; d++; } vector revB(Z*2, 0); rep(i, B.size()) revB[Z-i] = B[i]; NTT(revB); rep(i, Z*2) revB[i] = revB[i] * nttC[d+1][i]; NTT(revB); reverse(revB.begin() + 1, revB.end()); rep(i, n) revB[i] = revB[i+Z] * inv_ntt_size[d+1]; revB.resize(n); return revB; } vector ans(n); for(int i=0; i sigma_tree(const nachia::CentroidDecomposition::BFSUnit& tree){ vector dist_freq(tree.I.size(), 0); get_bfsbuf_dist(tree); for(int p : tree.I) dist_freq[bfsbuf_dist[p]] += Q[p]; while(1 < dist_freq.size() && dist_freq.back().val() == 0) dist_freq.pop_back(); return sigma(dist_freq); } int main() { cin >> N; Q.resize(N); rep(i,N) cin >> Q[i]; { vector> edges(N-1); rep(i,N-1){ int u,v; cin >> u >> v; u--; v--; edges[i] = make_pair(u,v); } E = nachia::AdjacencyList(N, edges, true); } int max_ntt_size_log = 0; while((1 << max_ntt_size_log) < N + 6) max_ntt_size_log++; max_ntt_size_log++; int max_ntt_size = 1 << max_ntt_size_log; k0 = 1; for(int i=1; i<=N; i++) k0 *= i; k0 *= k0; inv_mod.assign(max_ntt_size+1, 1); for(int i=2; i<=max_ntt_size; i++) inv_mod[i] = (MOD / i) * -inv_mod[MOD % i]; C.resize(max_ntt_size); for(int i=0; i sigma_s = sigma_tree(bfs_s); for(int nx : E[s]) if(centroid_decomposition.cdep[nx] > dep_s){ nachia::CentroidDecomposition::BFSUnit bfs_nx = centroid_decomposition.bfs_layer(nx, dep_s+1); vector sigma_nx = sigma_tree(bfs_nx); for(int p : bfs_nx.I){ int d = bfsbuf_dist[p] + 1; ans[p] += sigma_s[d] - sigma_nx[d+1]; } } ans[s] += sigma_s[0]; } rep(p,N) cout << ans[p].val() << '\n'; return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } ios_do_not_sync_instance;