#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector& vec, const V& val, int len) { vec.assign(len, val); } template void ndarray(vector& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif template struct ModInt { #if __cplusplus >= 201402L #define MDCONST constexpr #else #define MDCONST #endif using lint = long long; MDCONST static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } MDCONST ModInt() : val_(0) {} MDCONST ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } MDCONST ModInt(lint v) { _setval(v % md + md); } MDCONST explicit operator bool() const { return val_ != 0; } MDCONST ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } MDCONST ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } MDCONST ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } MDCONST ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } MDCONST ModInt operator-() const { return ModInt()._setval(md - val_); } MDCONST ModInt &operator+=(const ModInt &x) { return *this = *this + x; } MDCONST ModInt &operator-=(const ModInt &x) { return *this = *this - x; } MDCONST ModInt &operator*=(const ModInt &x) { return *this = *this * x; } MDCONST ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend MDCONST ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % md + x.val_); } friend MDCONST ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % md - x.val_ + md); } friend MDCONST ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.val_ % md); } friend MDCONST ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % md * x.inv().val() % md); } MDCONST bool operator==(const ModInt &x) const { return val_ == x.val_; } MDCONST bool operator!=(const ModInt &x) const { return val_ != x.val_; } MDCONST bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } MDCONST friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } MDCONST ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static std::vector facs, facinvs, invs; MDCONST static void _precalculation(int N) { int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } MDCONST ModInt inv() const { if (this->val_ < std::min(md >> 1, 1 << 21)) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } MDCONST ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } MDCONST ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } MDCONST ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } MDCONST ModInt nCr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv() * r.facinv(); } MDCONST ModInt nPr(const ModInt &r) const { return (this->val_ < r.val_) ? 0 : this->fac() * (*this - r).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template std::vector> ModInt::facs = {1}; template std::vector> ModInt::facinvs = {1}; template std::vector> ModInt::invs = {0}; using mint = ModInt<998244353>; // Linear sieve algorithm for fast prime factorization // Complexity: O(N) time, O(N) space: // - MAXN = 10^7: ~44 MB, 80~100 ms (Codeforces / AtCoder GCC, C++17) // - MAXN = 10^8: ~435 MB, 810~980 ms (Codeforces / AtCoder GCC, C++17) // Reference: // [1] D. Gries, J. Misra, "A Linear Sieve Algorithm for Finding Prime Numbers," // Communications of the ACM, 21(12), 999-1003, 1978. // - https://cp-algorithms.com/algebra/prime-sieve-linear.html // - https://37zigen.com/linear-sieve/ struct Sieve { std::vector min_factor; std::vector primes; Sieve(int MAXN) : min_factor(MAXN + 1) { for (int d = 2; d <= MAXN; d++) { if (!min_factor[d]) { min_factor[d] = d; primes.emplace_back(d); } for (const auto &p : primes) { if (p > min_factor[d] or d * p > MAXN) break; min_factor[d * p] = p; } } } // Prime factorization for 1 <= x <= MAXN^2 // Complexity: O(log x) (x <= MAXN) // O(MAXN / log MAXN) (MAXN < x <= MAXN^2) template std::map factorize(T x) const { std::map ret; assert(x > 0 and x <= ((long long)min_factor.size() - 1) * ((long long)min_factor.size() - 1)); for (const auto &p : primes) { if (x < T(min_factor.size())) break; while (!(x % p)) x /= p, ret[p]++; } if (x >= T(min_factor.size())) ret[x]++, x = 1; while (x > 1) ret[min_factor[x]]++, x /= min_factor[x]; return ret; } // Enumerate divisors of 1 <= x <= MAXN^2 // Be careful of highly composite numbers https://oeis.org/A002182/list // https://gist.github.com/dario2994/fb4713f252ca86c1254d#file-list-txt (n, (# of div. of n)): // 45360->100, 735134400(<1e9)->1344, 963761198400(<1e12)->6720 template std::vector divisors(T x) const { std::vector ret{1}; for (const auto p : factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { for (T a = 1, d = 1; d <= p.second; d++) { a *= p.first; ret.push_back(ret[i] * a); } } } return ret; // NOT sorted } // Euler phi functions of divisors of given x // Verified: ABC212 G https://atcoder.jp/contests/abc212/tasks/abc212_g // Complexity: O(sqrt(x) + d(x)) template std::map euler_of_divisors(T x) const { assert(x >= 1); std::map ret; ret[1] = 1; std::vector divs{1}; for (auto p : factorize(x)) { int n = ret.size(); for (int i = 0; i < n; i++) { ret[divs[i] * p.first] = ret[divs[i]] * (p.first - 1); divs.push_back(divs[i] * p.first); for (T a = divs[i] * p.first, d = 1; d < p.second; a *= p.first, d++) { ret[a * p.first] = ret[a] * p.first; divs.push_back(a * p.first); } } } return ret; } // Moebius function Table, (-1)^{# of different prime factors} for square-free x // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...] https://oeis.org/A008683 std::vector GenerateMoebiusFunctionTable() const { std::vector ret(min_factor.size()); for (unsigned i = 1; i < min_factor.size(); i++) { if (i == 1) { ret[i] = 1; } else if ((i / min_factor[i]) % min_factor[i] == 0) { ret[i] = 0; } else { ret[i] = -ret[i / min_factor[i]]; } } return ret; } // Calculate [0^K, 1^K, ..., nmax^K] in O(nmax) // Note: **0^0 == 1** template std::vector enumerate_kth_pows(long long K, int nmax) const { assert(nmax < int(min_factor.size())); assert(K >= 0); if (K == 0) return std::vector(nmax + 1, 1); std::vector ret(nmax + 1); ret[0] = 0, ret[1] = 1; for (int n = 2; n <= nmax; n++) { if (min_factor[n] == n) { ret[n] = MODINT(n).pow(K); } else { ret[n] = ret[n / min_factor[n]] * ret[min_factor[n]]; } } return ret; } }; Sieve sieve(100000); int solve(const vector &A) { int n = A.size(); map mp; mp[0] = 1; vector> vp; for (auto a : A) { vp.clear(); for (auto [g, c] : mp) vp.emplace_back(__gcd(g, a), c); for (auto [n, v] : vp) mp[n] += v; } mint ret = 0; for (auto [key, val] : mp) if (key > 1) ret += val; return ret.val(); } int main() { dbg(sieve.primes.size()); lint M; cin >> M; M += 998244353; int rem = M; vector A{1}; int cur = 32; int cur2 = 0; for (int d = 30; d >= 0; --d) { if ((rem >> d) & 1) { if (d) { rem -= (1 << d) - 1; A.push_back(sieve.primes[cur2]); REP(_, d - 1) A.push_back(sieve.primes[cur2] * sieve.primes[cur++]); ++cur2; } else { rem--; A.push_back(sieve.primes[cur++]); break; } ++d; } } dbg(make_tuple(A, solve(A), M)); assert(sort_unique(A).size() == A.size()); assert(*max_element(ALL(A)) <= 100000); assert(solve(A) == M); cout << A.size() << '\n'; REP(i, A.size()) cout << A.at(i) << (i + 1 == int(A.size()) ? '\n' : ' '); cout << endl; }