#pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; //constexpr ll mod = 998244353; constexpr ll mod = 1000000007; const ll INF = mod * mod; typedef pairP; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) #define all(v) (v).begin(),(v).end() typedef pair LP; template void chmin(T& a, T b) { a = min(a, b); } template void chmax(T& a, T b) { a = max(a, b); } template void cinarray(vector& v) { rep(i, v.size())cin >> v[i]; } template void coutarray(vector& v) { rep(i, v.size()) { if (i > 0)cout << " "; cout << v[i]; } cout << "\n"; } ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 21; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } using ld = long double; //typedef long double ld; typedef pair LDP; const ld eps = 1e-10; const ld pi = acosl(-1.0); template void addv(vector& v, int loc, T val) { if (loc >= v.size())v.resize(loc + 1, 0); v[loc] += val; } /*const int mn = 2000005; bool isp[mn]; vector ps; void init() { fill(isp + 2, isp + mn, true); for (int i = 2; i < mn; i++) { if (!isp[i])continue; ps.push_back(i); for (int j = 2 * i; j < mn; j += i) { isp[j] = false; } } }*/ //[,val) template auto prev_itr(set& st, T val) { auto res = st.lower_bound(val); if (res == st.begin())return st.end(); res--; return res; } //[val,) template auto next_itr(set& st, T val) { auto res = st.lower_bound(val); return res; } using mP = pair; mP operator+(mP a, mP b) { return { a.first + b.first,a.second + b.second }; } mP operator+=(mP& a, mP b) { a = a + b; return a; } mP operator-(mP a, mP b) { return { a.first - b.first,a.second - b.second }; } mP operator-=(mP& a, mP b) { a = a - b; return a; } LP operator+(LP a, LP b) { return { a.first + b.first,a.second + b.second }; } LP operator+=(LP& a, LP b) { a = a + b; return a; } LP operator-(LP a, LP b) { return { a.first - b.first,a.second - b.second }; } LP operator-=(LP& a, LP b) { a = a - b; return a; } mt19937 mt(time(0)); const string drul = "DRUL"; string senw = "SENW"; //DRUL,or SENW int dx[4] = { 1,0,-1,0 }; int dy[4] = { 0,1,0,-1 }; //----------------------------------------- //https://github.com/atcoder/ac-library namespace internal { std::vector sa_naive(const std::vector& s) { int n = int(s.size()); std::vector sa(n); std::iota(sa.begin(), sa.end(), 0); std::sort(sa.begin(), sa.end(), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++; r++; } return l == n; }); return sa; } std::vector sa_doubling(const std::vector& s) { int n = int(s.size()); std::vector sa(n), rnk = s, tmp(n); std::iota(sa.begin(), sa.end(), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; std::sort(sa.begin(), sa.end(), cmp); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } std::swap(tmp, rnk); } return sa; } // SA-IS, linear-time suffix array construction // Reference: // G. Nong, S. Zhang, and W. H. Chan, // Two Efficient Algorithms for Linear Time Suffix Array Construction template std::vector sa_is(const std::vector& s, int upper) { int n = int(s.size()); if (n == 0) return {}; if (n == 1) return { 0 }; if (n == 2) { if (s[0] < s[1]) { return { 0, 1 }; } else { return { 1, 0 }; } } if (n < THRESHOLD_NAIVE) { return sa_naive(s); } if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); } std::vector sa(n); std::vector ls(n); for (int i = n - 2; i >= 0; i--) { ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); } std::vector sum_l(upper + 1), sum_s(upper + 1); for (int i = 0; i < n; i++) { if (!ls[i]) { sum_s[s[i]]++; } else { sum_l[s[i] + 1]++; } } for (int i = 0; i <= upper; i++) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const std::vector& lms) { std::fill(sa.begin(), sa.end(), -1); std::vector buf(upper + 1); std::copy(sum_s.begin(), sum_s.end(), buf.begin()); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); sa[buf[s[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int v = sa[i]; if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; } } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); for (int i = n - 1; i >= 0; i--) { int v = sa[i]; if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; } } }; std::vector lms_map(n + 1, -1); int m = 0; for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; } } std::vector lms; lms.reserve(m); for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms.push_back(i); } } induce(lms); if (m) { std::vector sorted_lms; sorted_lms.reserve(m); for (int v : sa) { if (lms_map[v] != -1) sorted_lms.push_back(v); } std::vector rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; for (int i = 1; i < m; i++) { int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) { same = false; } else { while (l < end_l) { if (s[l] != s[r]) { break; } l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is(rec_s, rec_upper); for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; } induce(sorted_lms); } return sa; } } // namespace internal std::vector suffix_array(const std::vector& s, int upper) { assert(0 <= upper); for (int d : s) { assert(0 <= d && d <= upper); } auto sa = internal::sa_is(s, upper); return sa; } template std::vector suffix_array(const std::vector& s) { int n = int(s.size()); std::vector idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; }); std::vector s2(n); int now = 0; for (int i = 0; i < n; i++) { if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return internal::sa_is(s2, now); } std::vector suffix_array(const std::string& s) { int n = int(s.size()); std::vector s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return internal::sa_is(s2, 255); } // Reference: // T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, // Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its // Applications template std::vector lcp_array(const std::vector& s, const std::vector& sa) { int n = int(s.size()); assert(n >= 1); std::vector rnk(n); for (int i = 0; i < n; i++) { rnk[sa[i]] = i; } std::vector lcp(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } std::vector lcp_array(const std::string& s, const std::vector& sa) { int n = int(s.size()); std::vector s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return lcp_array(s2, sa); } struct sparse_table { private: int n; int tmp; vector ori; vector transtmp; vector> nodel; public: sparse_table(vector _ori) { ori = _ori; n = ori.size(); int cop = n; tmp = 0; while (cop > 0) { tmp++; cop >>= 1; } nodel.resize(tmp); rep(i, tmp)nodel[i].resize(n); rep(i, n) { nodel[0][i] = ori[i]; } rep(j, tmp - 1) { rep(i, n) { if (i + (1 << j) < n) { nodel[j + 1][i] = min(nodel[j][i], nodel[j][i + (1 << j)]); } } } transtmp.resize(n + 1); int x = 1; int cnt = 0; rep1(i, n) { while (x * 2 <= i) { x *= 2; cnt++; } transtmp[i] = cnt; } } //[l,r) int query(int l, int r) { if (r - l == 0)return mod; int cnt = transtmp[r - l]; return min(nodel[cnt][l], nodel[cnt][r - (1 << cnt)]); } }; void solve() { int n; cin >> n; vector s(n); rep(i, n)cin >> s[i]; auto comp = [&](int i, int j) { return s[i] < s[j]; }; vector sa(n); rep(i, n)sa[i] = i; sort(all(sa), comp); vector lcp(n-1); rep(i, n - 1) { int idl = sa[i], idr = sa[i + 1]; int len = min(s[idl].size(), s[idr].size()); rep(j, len) { if (s[idl][j] == s[idr][j]) { lcp[i]++; } else break; } } vector rev(sa.size()); rep(i, sa.size())rev[sa[i]] = i; sparse_table st(lcp); auto query = [&](int i, int j) { int le = rev[i]; int ri = rev[j]; if (le > ri)swap(le, ri); int res = st.query(le, ri); chmin(res, (int)s[i].size()); chmin(res, (int)s[j].size()); return res; }; ll m, x, d; cin >> m >> x >> d; ll ans = 0; rep1(k, m) { int i = (x / (n - 1)) + 1; int j = (x % (n - 1)) + 1; if (i > j) { swap(i, j); } else { j++; } x = (x + d) % ((ll)n * (n - 1)); ans += query(i - 1, j - 1); //cout << query(i - 1, j - 1) << "\n"; } cout << ans << "\n"; } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); //cout << fixed << setprecision(10); //init_f(); //init(); //expr(); //while(true) //int t; cin >> t; rep(i, t) solve(); return 0; }