#include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template struct Dual_Segment_Tree { using H = function; int n, height; vector lazy; const H h; const Operator_Monoid e2; Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) { n = 1, height = 0; while (n < m) n <<= 1, height++; lazy.assign(2 * n, e2); } inline void eval(int i) { if (i < n && lazy[i] != e2) { lazy[2 * i] = h(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]); lazy[i] = e2; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void apply(int l, int r, const Operator_Monoid &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += n, r += n; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = h(lazy[l], x), l++; if (r & 1) r--, lazy[r] = h(lazy[r], x); l >>= 1, r >>= 1; } } Operator_Monoid get(int i) { thrust(i + n); return lazy[i + n]; } Operator_Monoid operator[](int i) { return get(i); } }; ll solve(vector a, vector b) { if (sz(a) > sz(b)) swap(a, b); int n = sz(a), m = sz(b); vector c; rep(i, n) c.eb(a[i], 0); rep(i, m) c.eb(b[i], 1); sort(all(c)); auto g = [](ll x, ll y) { return x + y; }; Dual_Segment_Tree seg(m + 1, g, 0); vector v(m + 1, INF); v[0] = 0; int s = 0; rep(i, n + m) { auto [w, col] = c[i]; if (col == 0) { seg.apply(0, s, w); seg.apply(s, m + 1, -w); s--; } else { ll tmp = (s >= 0 ? seg[s] + v[s] : 0); seg.apply(0, s + 1, -w); seg.apply(s + 1, m + 1, w); if (s >= 0) { ll now = seg[s + 1] + v[s + 1]; if (tmp < now) seg.apply(s + 1, s + 2, tmp - now); } s++; } } return seg[s] + v[s]; } int main() { int N, M, K; cin >> N >> M >> K; vector B(N), R(M); rep(i, N) cin >> B[i]; rep(i, M) cin >> R[i]; if (N > M) { swap(B, R); swap(N, M); } map> mp1, mp2; rep(i, N) mp1[B[i] % K].eb(B[i] / K); rep(i, M) mp2[R[i] % K].eb(R[i] / K); ll ans = 0; each(e, mp1) { auto v = mp2[e.first]; if (sz(e.second) > sz(v)) { cout << "-1\n"; return 0; } ans += solve(e.second, v); } cout << ans << '\n'; }