from math import gcd def inv_gcd(a, b): a %= b if a == 0: return b, 0 # 初期状態 s, t = b, a m0, m1 = 0, 1 while t: # 遷移の準備 u = s // t # 遷移 s -= t * u m0 -= m1 * u # swap s, t = t, s m0, m1 = m1, m0 if m0 < 0: m0 += b // s return s, m0 def crt(r, m): assert len(r) == len(m) n = len(r) r0, m0 = 0, 1 # 初期値 x = 0 (mod 1) for i in range(n): assert m[i] >= 1 #r1, m1は遷移に使う値 r1, m1 = r[i] % m[i], m[i] #m0がm1以上になるようにする。 if m0 < m1: r0, r1 = r1, r0 m0, m1 = m1, m0 # m0がm1の倍数のとき gcdはm1、lcmはm0 # 解が存在すれば何も変わらないので以降の手順はスキップ if m0 % m1 == 0: if r0 % m1 != r1: return [0, 0] continue # 拡張ユークリッドの互除法によりgcd(m0, m1)と m0 * im = gcd (mod m1) を満たす imを求める g, im = inv_gcd(m0, m1) # 解の存在条件の確認 if (r1 - r0) % g: return [0, 0] """ r0, m0の遷移 コメントアウト部分はACLでの実装 C++なのでlong longを超えないようにしている C++ はlcm(m0, m1)で割った余りが負になり得る """ # u1 = m1 // g # x = (r1 - r0) // g % u1 * im % u1 # r0 += x * m0 # m0 *= u1 u1 = m0 * m1 // g r0 += (r1 - r0) // g * m0 * im % u1 m0 = u1 #if r0 < 0: r0 += m0 return [r0, m0] N = int(input()) M = int(input()) B = [] C = [] for i in range(M): r, m = map(int, input().split()) B.append(m) C.append(r) tmp = crt(B, C) # [18, 35] if tmp == [0,0]: print("NaN") exit() tmp2 = sum(tmp) if M == 1: print(tmp2 % C[0]) exit() tmp3 = C[0] * C[0 + 1] // gcd(C[0], C[0 + 1]) for i in range(2, M): tmp3 = tmp3 * C[i] // gcd(tmp3, C[i]) print(tmp2 % tmp3)