MOD = 100000000 def add(x, y): if x[0] == 0: return y elif y[0] == 0: return x x = list(x) y = list(y) if x[1] > y[1]: x, y = y, x y[0] <<= y[1] - x[1] z0 = x[0] + y[0] z1 = x[1] return f(z0, z1) def times(x, y): if x[0] == 0 or y[0] == 0: return (0, 0) z0 = x[0] * y[0] z1 = x[1] + y[1] return f(z0, z1) def matpow(A, B, w): l = len(A) while w: if w & 1: C = [(0, 0)] * l for i in range(l): for j in range(l): C[i] = add(C[i], times(A[i][j], B[j])) B = C C = [[(0, 0)] * l for _ in range(l)] for i in range(l): for j in range(l): for k in range(l): C[i][j] = add(C[i][j], times(A[i][k], A[k][j])) A = C w >>= 1 return B def matpow_normal(A, B, w): l = len(A) while w: if w & 1: C = [0] * l for i in range(l): for j in range(l): C[i] += A[i][j] * B[j] C[i] %= MOD B = C C = [[0] * l for _ in range(l)] for i in range(l): for j in range(l): for k in range(l): C[i][j] += A[i][k] * A[k][j] C[i][j] %= MOD A = C w >>= 1 return B S = int(input()) m = int(input()) L = int(input()) nex = [0] * 10000 def f(x, r=0): if x == 0: return 0, 0 while x % 2 == 0: r += 1 x //= 2 return x % MOD, r for n in range(2, 10000): d = n * n + 4 B = [f(2), f(0)] A = [[f(n, -1), f(d, -1)], [f(1, -1), f(n, -1)]] ret = matpow(A, B, m) ret = ret[1] nex[n] = ret[0] * pow(2, ret[1], 10000) % 10000 if m % 2 == 1: nex[n] -= 1 if nex[n] == -1: nex[n] = 9999 A = [[1, 1], [1, 0]] B = [0, 1] nex[1] = matpow_normal(A, B, m)[0] % 10000 if m % 2 == 1 and m <= 35: nex[1] -= 1 if nex[1] == -1: nex[1] = 9999 n = int(S) doubling = [[-1] * 10000 for _ in range(60)] for i in range(10000): doubling[0][i] = nex[i] for i in range(1, 60): for j in range(10000): doubling[i][j] = doubling[i - 1][doubling[i - 1][j]] for i in range(60): if L >> i & 1: n = doubling[i][n] ans = str(n).zfill(4) print(ans)