from math import gcd def isprime(n): if n <= 1: return False elif n == 2: return True elif n % 2 == 0: return False A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022] s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in A: if a % n == 0: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def pollard(n): if n % 2 == 0: return 2 if isprime(n): return n f = lambda x:(x * x + 1) % n step = 0 while 1: step += 1 x = step y = f(x) while 1: p = gcd(y - x + n, n) if p == 0 or p == n: break if p != 1: return p x = f(x) y = f(f(y)) def primefact(n): if n == 1: return [] p = pollard(n) if p == n: return [p] left = primefact(p) right = primefact(n // p) left += right return sorted(left) def divisor_lst(n): if n == 1: return [1] primes = primefact(n) primes.append(primes[-1] + 1) bef = primes[0] cnt = 0 ret = [1] for p in primes: if p == bef: cnt += 1 else: times = bef le = len(ret) for _ in range(cnt): for i in range(le): ret.append(ret[i] * times) times *= bef bef = p cnt = 1 ret.sort() return ret p, q = map(int, input().split()) g = gcd(p, q) p //= g q //= g if p >= q: if (p, q) == (1, 1): print(1) print(2, 2) elif (p, 1) == (2, 1): print(1) print(1, 1) elif p - q == 1: print(2) print(1, q) print(q, 1) else: print(0) exit() divs = set(divisor_lst(q)) ans = [] for n in divs: m = p - n if m <= 0 or gcd(n, m) != 1: continue nm = n * m if q % nm == 0: t = q // nm nume = n + m deno = n * m * t g = gcd(nume, deno) nume //= g deno //= g if(nume, deno) == (p, q): ans.append((n * t, m * t)) ans.sort() print(len(ans)) for row in ans: print(*row)