#include using namespace std; #pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; const ll dy[9]={0,1,-1,0,1,1,-1,-1,0}; const ll dx[9]={1,0,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } const int mod = MOD9; const int max_n = 200005; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } bool operator==(const mint &p) const { return x == p.x; } bool operator!=(const mint &p) const { return x != p.x; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} using vm=vector; using vvm=vector; struct combination { vector fact, ifact; combination(int n):fact(n+1),ifact(n+1) { assert(n < mod); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n-k]; } }comb(max_n); template //faがint lenになってる struct SegTreeLazy {//遅延セグ木 単位元に注意(updateなら選ばれない数、affineなら(1,0)) using FX = function; using FA = function; using FM = function; int n; FX fx; FA fa; FM fm; const X ex; const M em; vector dat; vector lazy; SegTreeLazy(int n_, FX fx_, FA fa_, FM fm_, X ex_, M em_) : n(), fx(fx_), fa(fa_), fm(fm_), ex(ex_), em(em_), dat(n_ * 4, ex), lazy(n_ * 4, em) { int x = 1; while (n_ > x) x *= 2; n = x; } void set(int i, X x) { dat[i + n - 1] = x; } void build() { for (int k = n - 2; k >= 0; k--) dat[k] = fx(dat[2 * k + 1], dat[2 * k + 2]); } /* lazy eval */ void eval(int k, int len) { if (lazy[k] == em) return; // 更新するものが無ければ終了 if (k < n - 1) { // 葉でなければ子に伝搬 lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]); lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]); } // 自身を更新 dat[k] = fa(dat[k],lazy[k],len);//fa(dat[k], fp(lazy[k], len)); lazy[k] = em; } void update(int a, int b, M x, int k, int l, int r) { eval(k, r - l); if (a <= l && r <= b) { // 完全に内側の時 lazy[k] = fm(lazy[k], x); eval(k, r - l); } else if (a < r && l < b) { // 一部区間が被る時 update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子 update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子 dat[k] = fx(dat[k * 2 + 1], dat[k * 2 + 2]); } } void update(int a, int b, M x) { update(a, b, x, 0, 0, n); } X query_sub(int a, int b, int k, int l, int r) { eval(k, r - l); if (r <= a || b <= l) { // 完全に外側の時 return ex; } else if (a <= l && r <= b) { // 完全に内側の時 return dat[k]; } else { // 一部区間が被る時 X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return fx(vl, vr); } } X query(int a, int b) { return query_sub(a, b, 0, 0, n); } X operator[](int i){ return query(i,i+1); } }; //0-indexed,2冪のセグメントツリー template struct SegTree { private: int n;// 葉の数 vector data;// データを格納するvector T def; // 初期値かつ単位元 function operation; // 区間クエリで使う処理 function change;// 点更新で使う処理 T find(int a, int b) { T val_left = def, val_right = def; for (a += (n - 1), b += (n - 1); a < b; a >>= 1, b >>= 1) { if ((a & 1) == 0){ val_left = operation(val_left, data[a]); } if ((b & 1) == 0){ val_right = operation(data[--b],val_right); } } return operation(val_left, val_right); } public: // _n:必要サイズ, _def:初期値かつ単位元, _operation:クエリ関数, // _change:更新関数 SegTree(size_t _n, T _def, function _operation, function _change=[](T a,T b){return b;}) : def(_def), operation(_operation), change(_change) { n = 1; while (n < _n) { n *= 2; } data = vector(2 * n - 1, def); } void set(int i, T x) { data[i + n - 1] = x; } void build() { for (int k=n-2;k>=0;k--) data[k] = operation(data[2*k+1],data[2*k+2]); } // 場所i(0-indexed)の値をxで更新 void update(int i, T x) { i += n - 1; data[i] = change(data[i], x); while (i > 0) { i = (i - 1) / 2; data[i] = operation(data[i * 2 + 1], data[i * 2 + 2]); } } T all_prod(){ return data[0]; } // [a, b)の区間クエリを実行 T query(int a, int b) { //return _query(a, b, 0, 0, n); return find(a,b); } // 添字でアクセス T operator[](int i) { return data[i + n - 1]; } }; vector divisor(long long n) { vector ret; for (long long i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(ret.begin(), ret.end()); // 昇順に並べる return ret; } int main(){ ll p,q;cin >> p >> q; set st; { ll hoge=gcd(p,q); p/=hoge;q/=hoge; } for(auto a:divisor(q)){ for(auto b:divisor(q)){ if(q%(a*b)!=0)continue; ll gx=(a+b)*q,gy=a*b*p; if(gx%gy!=0)continue; ll g=gx/gy; st.insert({g*a,g*b}); } } cout << st.size() << endl; for(auto p:st){ cout << p.first <<" " << p.second << endl; } }