#include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; // const int MOD = 1000000007; const int MOD = 998244353; template struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int(a); return is; } }; using mint = Mod_Int; template struct Combination { static vector _fac, _ifac; Combination() {} static void init(int n) { _fac.resize(n + 1), _ifac.resize(n + 1); _fac[0] = 1; for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i; _ifac[n] = _fac[n].inverse(); for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i; } static T fac(int k) { return _fac[k]; } static T ifac(int k) { return _ifac[k]; } static T inv(int k) { return fac(k - 1) * ifac(k); } static T P(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k); } static T C(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k) * ifac(k); } // k 個の区別できない玉を n 個の区別できる箱に入れる場合の数 static T H(int n, int k) { if (n < 0 || k < 0) return 0; return k == 0 ? 1 : C(n + k - 1, k); } // n 個の区別できる玉を、k 個の区別しない箱に、各箱に 1 個以上玉が入るように入れる場合の数 static T second_stirling_number(int n, int k) { T ret = 0; for (int i = 0; i <= k; i++) { T tmp = C(k, i) * T(i).pow(n); ret += ((k - i) & 1) ? -tmp : tmp; } return ret * ifac(k); } // n 個の区別できる玉を、k 個の区別しない箱に入れる場合の数 static T bell_number(int n, int k) { if (n == 0) return 1; k = min(k, n); vector pref(k + 1); pref[0] = 1; for (int i = 1; i <= k; i++) { if (i & 1) { pref[i] = pref[i - 1] - ifac(i); } else { pref[i] = pref[i - 1] + ifac(i); } } T ret = 0; for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i]; return ret; } }; template vector Combination::_fac = vector(); template vector Combination::_ifac = vector(); using comb = Combination; template // 流量の型 struct Dinic { struct edge { int to; F cap; int rev; edge(int to, F cap, int rev) : to(to), cap(cap), rev(rev) {} }; vector> es; vector d, pos; const F zero_F, INF_F; const int n; Dinic(int n, F zero_F = 0, F INF_F = numeric_limits::max() / 2) : es(n), d(n), pos(n), zero_F(zero_F), INF_F(INF_F), n(n) {} void add_edge(int from, int to, F cap, bool directed = true) { es[from].emplace_back(to, cap, (int)es[to].size()); es[to].emplace_back(from, directed ? zero_F : cap, (int)es[from].size() - 1); } bool _bfs(int s, int t) { fill(begin(d), end(d), -1); queue que; d[s] = 0; que.push(s); while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { if (e.cap > zero_F && d[e.to] == -1) { d[e.to] = d[i] + 1; que.push(e.to); } } } return d[t] != -1; } F _dfs(int now, int t, F flow) { if (now == t) return flow; for (int &i = pos[now]; i < (int)es[now].size(); i++) { edge &e = es[now][i]; if (e.cap > zero_F && d[e.to] > d[now]) { F f = _dfs(e.to, t, min(flow, e.cap)); if (f > zero_F) { e.cap -= f; es[e.to][e.rev].cap += f; return f; } } } return zero_F; } F max_flow(int s, int t) { // 操作後の d 配列は最小カットの 1 つを表す(0 以上なら s 側、-1 なら t 側) F flow = zero_F; while (_bfs(s, t)) { fill(begin(pos), end(pos), 0); F f = zero_F; while ((f = _dfs(s, t, INF_F)) > zero_F) flow += f; } return flow; } }; // サイズが同じで辞書順で次に大きい部分集合を求める template T next_combination(T comb) { assert(comb > 0); T x = comb & (-comb), y = comb + x, z = comb & (~y); return ((z / x) >> 1) | y; } template void fast_zeta_transform(vector &a, bool upper) { int n = a.size(); assert((n & (n - 1)) == 0); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if (!(j & i)) { if (upper) { a[j] += a[j | i]; } else { a[j | i] += a[j]; } } } } } template void fast_mobius_transform(vector &a, bool upper) { int n = a.size(); assert((n & (n - 1)) == 0); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if (!(j & i)) { if (upper) { a[j] -= a[j | i]; } else { a[j | i] -= a[j]; } } } } } template void fast_hadamard_transform(vector &a, bool inverse = false) { int n = a.size(); assert((n & (n - 1)) == 0); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if (!(j & i)) { T x = a[j], y = a[j | i]; a[j] = x + y, a[j | i] = x - y; } } } if (inverse) { T inv = T(1) / T(n); for (auto &e : a) e *= inv; } } template vector bitwise_and_convolve(vector a, vector b) { int n = a.size(); assert(b.size() == n && (n & (n - 1)) == 0); fast_zeta_transform(a, true), fast_zeta_transform(b, true); for (int i = 0; i < n; i++) a[i] *= b[i]; fast_mobius_transform(a, true); return a; } template vector bitwise_or_convolve(vector a, vector b) { int n = a.size(); assert(b.size() == n && (n & (n - 1)) == 0); fast_zeta_transform(a, false), fast_zeta_transform(b, false); for (int i = 0; i < n; i++) a[i] *= b[i]; fast_mobius_transform(a, false); return a; } template vector bitwise_xor_convolve(vector a, vector b) { int n = a.size(); assert(b.size() == n && (n & (n - 1)) == 0); fast_hadamard_transform(a), fast_hadamard_transform(b); for (int i = 0; i < n; i++) a[i] *= b[i]; fast_hadamard_transform(a, true); return a; } template vector subset_convolve(const vector &a, const vector &b) { int n = a.size(); assert(b.size() == n && (n & (n - 1)) == 0); int k = __builtin_ctz(n); vector> A(k + 1, vector(n, 0)), B(k + 1, vector(n, 0)), C(k + 1, vector(n, 0)); for (int i = 0; i < n; i++) { int t = __builtin_popcount(i); A[t][i] = a[i], B[t][i] = b[i]; } for (int i = 0; i <= k; i++) fast_zeta_transform(A[i], false), fast_zeta_transform(B[i], false); for (int i = 0; i <= k; i++) { for (int j = 0; j <= k - i; j++) { for (int l = 0; l < n; l++) C[i + j][l] += A[i][l] * B[j][l]; } } for (int i = 0; i <= k; i++) fast_mobius_transform(C[i], false); vector c(n); for (int i = 0; i < n; i++) c[i] = C[__builtin_popcount(i)][i]; return c; } int main() { comb::init(10000); int N; cin >> N; vector S(N, 0); rep(i, N) { rep(j, 6) { int x; cin >> x; x--; S[i] |= 1 << x; } } vector mi(1 << 9, 0); rep(i, 1 << N) { int x = 0; rep(j, N) { if (flg(i, j)) x |= S[j]; } chmax(mi[x], __builtin_popcount(i)); } mint ans = 0; vector dp(1 << 9, 0); auto dfs = [&](int i, int s, mint prod, auto &&dfs) -> void { if (i == 9) { ans += prod; return; } rep(j, N - s + 1) { bool flag = true; rep(k, 1 << i) { dp[k | (1 << i)] = dp[k] + j; if (dp[k | (1 << i)] < mi[k | (1 << i)]) { flag = false; break; } } if (flag) dfs(i + 1, s + j, prod * comb::ifac(j), dfs); } }; dfs(0, 0, 1, dfs); cout << ans * comb::fac(N) << '\n'; }