#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/686" #line 1 "library/my_template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using pi = pair; using vi = vector; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vec(type, name, ...) vector name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template T SUM(const vector &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T pick(deque &que) { T a = que.front(); que.pop_front(); return a; } template T pick(pq &que) { T a = que.top(); que.pop(); return a; } template T pick(pqg &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template T pick(vc &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template vc bincount(const vc &A, int size) { vc C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template vector argsort(const vector &A) { vector ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { int n = len(I); vc B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "library/other/io.hpp" // based on yosupo's fastio #include namespace detail { template std::true_type check_value(int); template std::false_type check_value(long); } // namespace detail template struct is_modint : decltype(detail::check_value(0)) {}; template using is_modint_t = enable_if_t::value>; template using is_not_modint_t = enable_if_t::value>; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template * = nullptr> bool read_single(T &ref) { long long val = 0; bool f = read_single(val); ref = T(val); return f; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p))); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p)) && read_single(get<3>(p))); } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template * = nullptr> void write(T &ref) { write(ref.val); } template void write(const vector &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair &val) { write(val.first); write(' '); write(val.second); } template void write(const tuple &val) { auto &[a, b, c] = val; write(a), write(' '), write(b), write(' '), write(c); } template void write(const tuple &val) { auto &[a, b, c, d] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d); } template void write(const tuple &val) { auto &[a, b, c, d, e] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e); } template void write(const tuple &val) { auto &[a, b, c, d, e, f] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f); } template void write(const array &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if(val < 0){ negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if(negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/alg/monoid/add.hpp" template struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "library/alg/monoid/max.hpp" template struct Monoid_Max { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); } static constexpr X unit() { return numeric_limits::lowest(); } static constexpr bool commute = true; }; #line 3 "library/alg/acted_monoid/max_add.hpp" template struct ActedMonoid_Max_Add { using Monoid_X = Monoid_Max; using Monoid_A = Monoid_Add; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a) { if (x == numeric_limits::lowest()) return x; return x + a; } }; #line 1 "library/ds/bbst/rbst_acted_monoid.hpp" template struct RBST_ActedMonoid { using Monoid_X = typename ActedMonoid::Monoid_X; using Monoid_A = typename ActedMonoid::Monoid_A; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; struct Node { Node *l, *r; X x, prod; // lazy, rev 反映済 A lazy; u32 size; bool rev; }; Node *pool; int pid; using np = Node *; RBST_ActedMonoid() : pid(0) { pool = new Node[NODES]; } void reset() { pid = 0; } np new_node(const X &x) { pool[pid].l = pool[pid].r = nullptr; pool[pid].x = x; pool[pid].prod = x; pool[pid].lazy = Monoid_A::unit(); pool[pid].size = 1; pool[pid].rev = 0; return &(pool[pid++]); } np new_node(const vc &dat) { auto dfs = [&](auto &dfs, u32 l, u32 r) -> np { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); u32 m = (l + r) / 2; np l_root = dfs(dfs, l, m); np r_root = dfs(dfs, m + 1, r); np root = new_node(dat[m]); root->l = l_root, root->r = r_root; update(root); return root; }; return dfs(dfs, 0, len(dat)); } np merge(np l_root, np r_root) { return merge_rec(l_root, r_root); } np merge3(np a, np b, np c) { return merge(merge(a, b), c); } np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); } pair split(np root, u32 k) { if (!root) { assert(k == 0); return {nullptr, nullptr}; } assert(0 <= k && k <= root->size); return split_rec(root, k); } tuple split3(np root, u32 l, u32 r) { np nm, nr; tie(root, nr) = split(root, r); tie(root, nm) = split(root, l); return {root, nm, nr}; } tuple split4(np root, u32 i, u32 j, u32 k) { np d; tie(root, d) = split(root, k); auto [a, b, c] = split3(root, i, j); return {a, b, c, d}; } X prod(np root, u32 l, u32 r) { if (l == r) return Monoid_X::unit(); return prod_rec(root, l, r, false); } X prod(np root) { return (root ? root->prod : Monoid_X::unit()); } np reverse(np root, u32 l, u32 r) { assert(Monoid_X::commute); assert(0 <= l && l <= r && r <= root->size); if (r - l <= 1) return root; auto [nl, nm, nr] = split3(root, l, r); nm->rev ^= 1; swap(nm->l, nm->r); return merge3(nl, nm, nr); } np apply(np root, u32 l, u32 r, const A a) { assert(0 <= l && l <= r && r <= root->size); return apply_rec(root, l, r, a); } np apply(np root, const A a) { if (!root) return root; return apply_rec(root, 0, root->size, a); } np set(np root, u32 k, const X &x) { return set_rec(root, k, x); } np multiply(np root, u32 k, const X &x) { return multiply_rec(root, k, x); } X get(np root, u32 k) { return get_rec(root, k, false, Monoid_A::unit()); } vc get_all(np root) { vc res; auto dfs = [&](auto &dfs, np root, bool rev, A lazy) -> void { if (!root) return; X me = ActedMonoid::act(root->x, lazy); lazy = Monoid_A::op(root->lazy, lazy); dfs(dfs, (rev ? root->r : root->l), rev ^ root->rev, lazy); res.eb(me); dfs(dfs, (rev ? root->l : root->r), rev ^ root->rev, lazy); }; dfs(dfs, root, 0, Monoid_A::unit()); return res; } template pair split_max_right(np root, const F check) { assert(check(Monoid_X::unit())); X x = Monoid_X::unit(); return split_max_right_rec(root, check, x); } private: inline u32 xor128() { static u32 x = 123456789; static u32 y = 362436069; static u32 z = 521288629; static u32 w = 88675123; u32 t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } void prop(np c) { if (c->lazy != Monoid_A::unit()) { if (c->l) { c->l->x = ActedMonoid::act(c->l->x, c->lazy); c->l->prod = ActedMonoid::act(c->l->prod, c->lazy); c->l->lazy = Monoid_A::op(c->l->lazy, c->lazy); } if (c->r) { c->r->x = ActedMonoid::act(c->r->x, c->lazy); c->r->prod = ActedMonoid::act(c->r->prod, c->lazy); c->r->lazy = Monoid_A::op(c->r->lazy, c->lazy); } c->lazy = Monoid_A::unit(); } if (c->rev) { if (c->l) { c->l->rev ^= 1; swap(c->l->l, c->l->r); } if (c->r) { c->r->rev ^= 1; swap(c->r->l, c->r->r); } c->rev = 0; } } void update(np c) { c->size = 1; c->prod = c->x; if (c->l) { c->size += c->l->size; c->prod = Monoid_X::op(c->l->prod, c->prod); } if (c->r) { c->size += c->r->size; c->prod = Monoid_X::op(c->prod, c->r->prod); } } np merge_rec(np l_root, np r_root) { if (!l_root) return r_root; if (!r_root) return l_root; u32 sl = l_root->size, sr = r_root->size; if (xor128() % (sl + sr) < sl) { prop(l_root); l_root->r = merge_rec(l_root->r, r_root); update(l_root); return l_root; } prop(r_root); r_root->l = merge_rec(l_root, r_root->l); update(r_root); return r_root; } pair split_rec(np root, u32 k) { if (!root) return {nullptr, nullptr}; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k <= sl) { auto [nl, nr] = split_rec(root->l, k); root->l = nr; update(root); return {nl, root}; } auto [nl, nr] = split_rec(root->r, k - (1 + sl)); root->r = nl; update(root); return {root, nr}; } np set_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root->l = set_rec(root->l, k, x); update(root); return root; } if (k == sl) { root->x = x; update(root); return root; } root->r = set_rec(root->r, k - (1 + sl), x); update(root); return root; } np multiply_rec(np root, u32 k, const X &x) { if (!root) return root; prop(root); u32 sl = (root->l ? root->l->size : 0); if (k < sl) { root->l = multiply_rec(root->l, k, x); update(root); return root; } if (k == sl) { root->x = Monoid_X::op(root->x, x); update(root); return root; } root->r = multiply_rec(root->r, k - (1 + sl), x); update(root); return root; } X prod_rec(np root, u32 l, u32 r, bool rev) { if (l == 0 && r == root->size) { return root->prod; } np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (root->l ? root->l->size : 0); X res = Monoid_X::unit(); if (l < sl) { X y = prod_rec(left, l, min(r, sl), rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy)); } if (l <= sl && sl < r) res = Monoid_X::op(res, root->x); u32 k = 1 + sl; if (k < r) { X y = prod_rec(right, max(k, l) - k, r - k, rev ^ root->rev); res = Monoid_X::op(res, ActedMonoid::act(y, root->lazy)); } return res; } X get_rec(np root, u32 k, bool rev, A lazy) { np left = (rev ? root->r : root->l); np right = (rev ? root->l : root->r); u32 sl = (root->l ? root->l->size : 0); if (k == sl) return ActedMonoid::act(root->x, lazy); lazy = Monoid_A::op(root->lazy, lazy); rev ^= root->rev; if (k < sl) return get_rec(left, k, rev, lazy); return get_rec(root->r, k - (1 + sl), rev, lazy); } np apply_rec(np root, u32 l, u32 r, const A &a) { prop(root); if (l == 0 && r == root->size) { root->x = ActedMonoid::act(root->x, a); root->prod = ActedMonoid::act(root->prod, a); root->lazy = a; return root; } u32 sl = (root->l ? root->l->size : 0); if (l < sl) apply_rec(root->l, l, min(r, sl), a); if (l <= sl && sl < r) root->x = ActedMonoid::act(root->x, a); u32 k = 1 + sl; if (k < r) apply_rec(root->r, max(k, l) - k, r - k, a); update(root); return root; } template pair split_max_right_rec(np root, const F &check, X &x) { if (!root) return {nullptr, nullptr}; prop(root); X y = Monoid_X::op(x, root->prod); if (check(y)) { x = y; return {root, nullptr}; } np left = root->l, right = root->r; if (left) { X y = Monoid_X::op(x, root->l->prod); if (!check(y)) { auto [n1, n2] = split_max_right_rec(left, check, x); root->l = n2; update(root); return {n1, root}; } x = y; } y = Monoid_X::op(x, root->x); if (!check(y)) { root->l = nullptr; update(root); return {left, root}; } x = y; auto [n1, n2] = split_max_right_rec(right, check, x); root->r = n1; update(root); return {root, n2}; } }; #line 6 "main.cpp" void solve() { LL(N); using AM = ActedMonoid_Max_Add; RBST_ActedMonoid X; using np = decltype(X)::np; const int INF = 1 << 30; np root = X.new_node(INF); FOR(N) { if (X.prod(root) != INF) root = X.merge(root, X.new_node(INF)); LL(L, R); // L未満 / R 未満 np a, b, c, c1, c2; auto check_L = [&](int e) -> bool { return e < L; }; auto check_R = [&](int e) -> bool { return e < R; }; tie(a, root) = X.split_max_right(root, check_L); tie(b, c) = X.split_max_right(root, check_R); tie(c1, c2) = X.split(c, 1); b = X.apply(b, 1); c1 = X.set(c1, 0, L); root = X.merge4(a, c1, b, c2); } auto check = [&](int e) -> bool { return e < INF; }; auto [n1, n2] = X.split_max_right(root, check); int ANS = (n1 ? n1->size : 0); print(ANS); } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }