using namespace std; #include "bits/stdc++.h" #define REP(a, b) for (long long a = 0; a < b; ++a) #define ALL(a) begin(a), end(a) #include "atcoder/modint.hpp" using mint = atcoder::modint998244353; template struct Matrix { vector> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector(m, 0)) {} Matrix(size_t n) : A(n, vector(n, 0)){}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector &operator[](int k) const { return (A.at(k)); } inline vector &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector> C(n, vector(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; Matrix pows(Matrix base, long long count) { Matrix now = base; count--; while (count != 0) { if (count % 2) { now *= base; } count /= 2; base *= base; } return now; } #define ld long double #define int long long void solve() { int n; cin >> n; Matrix graph(2, 2); graph.A[0][0] = 1; graph.A[0][1] = 1; graph.A[1][0] = 1; graph = pows(graph, n - 1); cout << (graph.A[0][0] + graph.A[0][1] - 1).val() << endl; } #undef int int main() { // Fasterize input/output script ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(100); int t = 1; // cin >> t; // comment out if solving multi testcase for (int testCase = 1; testCase <= t; ++testCase) { solve(); } return 0; }