#line 2 "nachia\\fps\\formal-power-series-struct.hpp" #include #include #include #include #include #line 3 "nachia\\math-modulo\\modulo-primitive-root.hpp" #include namespace nachia{ template struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x class Comb{ private: std::vector F; std::vector iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 1 "nachia\\fps\\ntt-modint.hpp" #line 3 "nachia\\fps\\ntt-modint.hpp" #include #line 6 "nachia\\fps\\ntt-modint.hpp" namespace nachia{ template void Ntt(RandomAccessIterator a, int N) { using Modint = typename std::iterator_traits::value_type; assert(1 <= N && N == (N&-N)); constexpr unsigned int MOD = Modint::mod(); Modint Zeta = Modint(nachia::PrimitiveRoot::GetVal()); Modint One = Modint(1); static std::vector rq = { Zeta.pow((MOD - 1) >> 2) }; while(1 << (rq.size()+1) < N) rq.push_back(Zeta.pow((MOD - 1) / 2 + ((MOD - 1) >> (rq.size()+2)) * 3)); for (int i = 1; i < N; i <<= 1) { auto q = One; int maxk = N / i / 2; for (int j = 0; j < i; j++) { int off = j * maxk * 2; for (int k = off; k < off + maxk; k++) { Modint l = a[k], r = a[k + maxk] * q; a[k] = l + r; a[k + maxk] = l - r; } if(j+1 != i) for(int d=0; ; d++) if(!(j&(1<> 1; k > (i ^= k); k >>= 1); } } template void INtt(RandomAccessIterator a, int N) { using Modint = typename std::iterator_traits::value_type; assert(1 <= N && N == (N&-N)); Ntt(a, N); std::reverse(a + 1, a + N); Modint invN = Modint(1), inv2 = Modint(Modint::mod() / 2 + 1); for(int i=1; i struct FormalPowerSeriesNTT { public: using MyType = FormalPowerSeriesNTT; static constexpr unsigned int MOD = Elem::mod(); private: using u32 = unsigned int; static const u32 zeta = nachia::PrimitiveRoot::GetVal(); static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb comb; std::vector a; public: unsigned int size() const noexcept { return a.size(); } Elem& operator[](unsigned int x) noexcept { return a[x]; } const Elem& operator[](unsigned int x) const noexcept { return a[x]; } Elem get_coeff(unsigned int x) const{ return (x < size()) ? a[x] : ZeroElem(); } static Comb& GetComb() { return comb; } MyType& removeLeadingZeros(){ unsigned int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if(a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FormalPowerSeriesNTT(){ a = { }; } FormalPowerSeriesNTT(unsigned int new_size) : a(new_size, ZeroElem()) {} FormalPowerSeriesNTT(std::vector&& src) : a(std::move(src)) {} FormalPowerSeriesNTT(const std::vector& src) : a(src) {} MyType& ntt() { int N = 1; while (N < (int)size()) N *= 2; a.resize(N, ZeroElem()); Ntt(a.begin(), N); return *this; } MyType& intt() { INtt(a.begin(), a.size()); return *this; } // returns [ a[l], a[l+1], a[l+2], ... , a[r-1] ] // a[i] = 0 ( i < 0 OR size() <= i ) MyType getSlice(int l, int r) const { if(l >= r) return MyType(); MyType res(r - l); for(int i=l; i upper = lower MyType& capSize(int lower, int upper = -1) { if(upper < 0) upper = lower; if(upper <= (int)size()) a.resize(upper); if((int)size() <= lower) a.resize(lower, ZeroElem()); return *this; } static MyType convolution(const MyType& a, const MyType& b){ if(a.size() <= 30 || b.size() <= 30){ if(a.size() > 30) return convolution(b,a); if(a.size() == 0 || b.size() == 0) return std::vector{ ZeroElem() }; std::vector res(a.size() + b.size() - 1); for(std::size_t i=0; i{ OneElem() }); } u32 N = 1; while (N < sz) N *= 2; u32 hN = N / 2; MyType hInv = power_sum(hN); MyType tgA = getSlice(0, N).ntt(); MyType htInv = hInv.getSlice(0, N); htInv.ntt(); MyType R = MyType(N); for(u32 i=0; i=1; i--) a[i] = a[i-1] * Elem(comb.invOf(i)); a[0] = ZeroElem(); return *this; } MyType copied() const { return MyType(*this); } MyType log(unsigned int sz){ assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), copied().difference()).capSize(sz-1,sz-1).integral(); } MyType exp(unsigned int sz){ MyType res = MyType(std::vector{ OneElem() }); while(res.size() < sz){ auto z = res.size(); auto tmp = res.log(z*2); tmp[0] = -OneElem(); for(u32 i=0; i= (n-1) / k + 1) return MyType(n); auto res = *this; for(int i=0; i=ctz; i--) res[i] = res[i-ctz]; for(int i=0; i get_vector_moved(){ std::vector res = std::move(a); a.clear(); return std::move(a); } MyType ax_plus_b(Elem a, Elem b) const { auto buf = MyType(size() + 1); for(u32 i=0; ia[i] * b; for(u32 i=0; ia[i] * a; return buf; } MyType operator+(const MyType& r) const { auto sz = std::max(this->size(), r.size()); MyType res(sz); for(u32 i=0; isize(); i++) res[i] += this->operator[](i); for(u32 i=0; isize(), r.size()); MyType res(sz); for(u32 i=0; isize(); i++) res[i] += this->operator[](i); for(u32 i=0; i=0; i--) res = res * x + a[i]; return res; } }; template Comb FormalPowerSeriesNTT::comb; } // namespace nachia #line 2 "nachia\\math\\ext-gcd.hpp" #line 6 "nachia\\math\\ext-gcd.hpp" namespace nachia{ // ax + by = gcd(a,b) std::pair ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, y); } } // namespace nachia #line 5 "nachia\\math-modulo\\static-modint.hpp" namespace nachia{ template struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const noexcept { return x; } my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const noexcept { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const noexcept { return x; } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } #line 4 "nachia\\fps\\shift-of-sampling-points.hpp" namespace nachia { template std::vector ShiftOfSamplingPointsOfPolynomial(std::vector points, Elem sh, int count=-1){ using Fps = FormalPowerSeriesNTT; int n = points.size(); int m = (count < 0) ? n : count; if(m == 0){ return {}; } if(n == 0){ return std::vector(m); } int z = std::max(n, m); Fps iF(z); Fps F(z); F[0] = 1; for(int i=1; i=1; i--) iF[i-1] = iF[i] * Elem::raw(i); Fps P(n); for(int i=0; i res(m); res[0] = P[0]; for(int i=1; i struct SimpleMatrix{ private: int h; int w; std::vector elems; public: SimpleMatrix(int new_h=0, int new_w=0){ h = new_h; w = new_w; elems.assign(h * w, 0); } SimpleMatrix(SimpleMatrix const&) = default; int numRow() const { return h; } int numColumn() const { return w; } int height() const { return numRow(); } int width() const { return numColumn(); } typename std::vector::iterator operator[](int y){ return elems.begin() + (y*w); } typename std::vector::const_iterator operator[](int y) const { return elems.begin() + (y*w); } static SimpleMatrix Identity(int idx, Elem One){ auto res = SimpleMatrix(idx, idx); for(int i=0; i SimpleMatrix PRecursiveMatrixProduct( SimpleMatrix> p, unsigned long long idx ){ using u64 = unsigned long long; int h = p.height(); std::vector>> res; res.resize(h); for(auto& a : res) a.resize(h); u64 a = 1, b = 1; for(int i=0; i(res[i][j], Elem(b)); std::copy(tmp.begin(), tmp.end(), std::back_inserter(res[i][j])); } b *= 2; }; auto ExtendB = [&](){ std::vector>> resbuf; resbuf.assign(h, std::vector>(h, std::vector(b))); for(int i=0; i(res[i][j], Elem(a) / Elem(maxA)); for(int k=0; k SimpleMatrix { SimpleMatrix res(h, h); for(int y=0; y SimpleMatrix { SimpleMatrix g(h, h); for(int y=0; y ans = SimpleMatrix::Identity(h, Elem::raw(1)); while(pos + maxA <= idx){ ans = EvalL(pos / maxA) * ans; pos += maxA; } while(pos < idx){ ans = EvalP(pos++) * ans; } return ans; } } // namespace nachia #line 4 "nachia\\fps\\polinomial-division.hpp" namespace nachia{ // return polynomials have no leading zeros template std::pair, FormalPowerSeriesNTT> PolynomialDivision( FormalPowerSeriesNTT A, FormalPowerSeriesNTT D, bool do_get_remainder = true ){ using Fps = FormalPowerSeriesNTT; auto dsize = D.size(); while(dsize != 0 && D[dsize-1].val() == 0) dsize--; assert(dsize != 0); if(A.size() == 0){ return std::make_pair(Fps(), Fps()); } if(A.size() < dsize){ return std::make_pair(Fps(), std::move(A)); } std::reverse(D.begin(), D.begin() + dsize); std::reverse(A.begin(), A.end()); int n = A.size(); unsigned int divSize = n - dsize + 1; auto invD = D.inv(divSize); auto tmp = (A.getSlice(0, divSize) * invD).getSlice(0, divSize); Fps ans1(divSize); for(unsigned int i=0; i #include #include #line 6 "nachia\\misc\\fastio.hpp" namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar(){ if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace(){ while(isspace(seekChar())) p++; } uint32_t nextU32(){ skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32(){ skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64(){ skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64(){ skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar(){ skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest){ dest = nextU32(); return *this; } MyType& operator>>(int& dest){ dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long& dest){ dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long long& dest){ dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest){ dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 5 "Main.cpp" int main(){ using Modint = nachia::StaticModint<998244353>; using Polynomial = nachia::FormalPowerSeriesNTT; using PolynomialMat = nachia::SimpleMatrix; using nachia::cin, nachia::cout; auto MatMod = [&](const PolynomialMat& mat, const Polynomial& mod) -> PolynomialMat { int n = mat.height(); PolynomialMat res(n, n); for(int i=0; i> T; if(T <= 5){ for(int t=0; t> N >> K; if(K >= 998244353){ cout << "0\n"; continue; } PolynomialMat M_nX = PolynomialMat(2,2); M_nX[0][0] = std::vector{ Modint(N) * 2 , -Modint(2) }; // 2N - 2k M_nX[0][1] = std::vector{ 0, (Modint(N)*2+1) / 2, -Modint(1) / 2 }; // (2N+1)k/2 - k^2/2 M_nX[1][0] = std::vector{ 1 }; M_nX[1][1] = std::vector{ 0 }; auto ansMat = nachia::PRecursiveMatrixProduct(M_nX, K); Modint ans = ansMat[0][0]; cout << ans.val() << '\n'; } } else{ int MAX_K = 100000; int MATRIX_QUERY = 1001001001; std::vector> NK(T); for(auto& nk : NK) cin >> nk.first >> nk.second; std::vector> queries; for(int k=0; k FX; std::vector KX; FX.assign(segN*2, PolynomialMat::Identity(2, Polynomial(std::vector{1}))); KX.assign(segN*2, Polynomial(std::vector{1})); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second == MATRIX_QUERY){ int k = queries[q].first; FX[segN+q][0][0] = std::vector{ -Modint(k)*2, Modint(2) }; // 2N - 2k FX[segN+q][0][1] = std::vector{ Modint(k)*(1-k) / 2, Modint(k) }; // Nk + k(1-k)/2 FX[segN+q][1][0] = std::vector{ 1 }; FX[segN+q][1][1] = std::vector{ 0 }; } else{ unsigned long long N = NK[queries[q].second].first; KX[segN+q] = Polynomial(std::vector{ -Modint(N), 1 }); // x - N } } for(int i=segN-1; i>=1; i--) FX[i] = FX[i*2+1] * FX[i*2]; for(int i=segN-1; i>=1; i--) KX[i] = KX[i*2+1] * KX[i*2]; std::vector FXmodKX(segN*2); FXmodKX[1] = MatMod(PolynomialMat::Identity(2, Polynomial(std::vector{1})), KX[1]); for(int i=1; i<=segN-1; i++){ FXmodKX[i*2] = MatMod(FXmodKX[i], KX[i*2]); FXmodKX[i*2+1] = MatMod(FX[i*2] * FXmodKX[i], KX[i*2+1]); } std::vector ans(T); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second != MATRIX_QUERY){ ans[queries[q].second] = FXmodKX[segN+q][0][0].eval(0); } } for(int i=0; i