#pragma GCC optimize ( "O3" ) #pragma GCC target ( "avx" ) #include using namespace std; using uint = unsigned int; using ll = long long; #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ // 通常の二分探索 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MAXIMUM; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ \ // 二進法の二分探索 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \ } \ \ template inline T Absolute( const T& a ){ return a > 0 ? a : - a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; } inline vector Difference( const vector& A ) { int size = A.size(); vector answer{}; if( size == 0 ){ return answer; } answer.push_back( A[0] ); FOR( i , 1 , size ){ answer.push_back( A[i] - A[i-1] ); } return answer; } inline vector inv_Difference( const vector& A ) { int size = A.size(); vector answer{}; int sum = 0; FOR( i , 0 , size ){ answer.push_back( sum += A[i] ); } return answer; } inline string to_bit( const vector& A ) { int size = A.size(); string answer{}; string ones = "1"; static const string zero = "0"; FOR( i , 0 , size ){ int Ai = A[i]; while( Ai != 0 ){ if( Ai % 2 == 1 ){ answer += ones; } ones += ones; Ai /= 2; } answer += zero; } return answer; } inline vector inv_to_bit( const string& A , const int& r ) { int size = A.size(); vector answer{}; int i_start = 0; int i = 0; int i2r = r; while( i2r < size ){ if( A.substr( i2r , 1 ) == "0" ){ answer.push_back( i - i_start ); i_start = i + 1; } i++; i2r += 2; } return answer; } int main() { UNTIE; CEXPR( ll , bound , 1000 ); CIN_ASSERT( N , 1 , bound ); vector A{}; int Ai_prev = 1; ll sum_A = 0; REPEAT( N ){ CIN_ASSERT( Ai , Ai_prev , bound ); A.push_back( Ai_prev = Ai ); sum_A += Ai; } string A_bit = to_bit( Difference( A ) ); vector B_dif[2] = { move( inv_to_bit( A_bit , 0 ) ) , move( inv_to_bit( A_bit , 1 ) ) }; vector B[2] = { move( inv_Difference( B_dif[0] ) ) , move( inv_Difference( B_dif[1] ) ) }; int sum_B[2] = {}; FOR( d , 0 , 2 ){ int& sum_B_d = sum_B[d]; vector& B_d = B[d]; int size_B_d = B_d.size(); FOR( i , 0 , size_B_d ){ sum_B_d += B_d[i]; } } ll sum_B_01 = sum_B[0] + sum_B[1]; if( sum_B_01 * 2 != sum_A ){ RETURN( 0 ); } CEXPR( ll , P , 998244353 ); ll answer = 1; FOREQ( i , 1 , sum_B_01 ){ ( answer *= i ) %= P; } ll q = 1; FOR( d , 0 , 2 ){ vector& B_d = B[d]; int i_min = 0; int size_B_d = B_d.size(); int i_max = size_B_d - 1; int j_lim = B_d[i_max]; FOR( j , 0 , j_lim ){ BS( i_start , i_min , i_max , B_d[i_start] <= j ? -1 : i_start == 0 ? 0 : B_d[i_start - 1] <= j ? 0 : 1 , 0 ); i_min = i_start; FOR( i , i_start , size_B_d ){ ( q *= ( B_d[i] - j ) + ( i - i_start ) ) %= P; } } } POWER_MOD( inv_q , q , P - 2 , P ); ( answer *= inv_q ) %= P; RETURN( answer ); }