// #pragma GCC optimize ( "O3" ) // #pragma GCC target ( "avx" ) #include using namespace std; using uint = unsigned int; using ll = long long; #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO ) \ ll ANSWER[LENGTH]; \ ll ANSWER_INV[LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_I ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \ ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV; \ FOREQINV( i , MAX_I - 1 , 0 ){ \ ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO; \ } \ } \ \ // 通常の二分探索 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MAXIMUM; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ \ // 二進法の二分探索 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \ } \ \ template inline T Absolute( const T& a ){ return a > 0 ? a : - a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; } class Dopt { public: int m_D; int m_opt; inline Dopt( int D = 0 , int opt = 0 ) : m_D( D ) , m_opt( opt ) {} }; inline bool operator<( const Dopt& dopt0 , const Dopt& dopt1 ) { return dopt0.m_D < dopt1.m_D; } int main() { UNTIE; CEXPR( int , bound_N , 1500 ); CIN_ASSERT( N , 1 , bound_N ); CEXPR( int , bound_M , 1500 ); CIN_ASSERT( M , 1 , bound_M ); CEXPR( int , bound_Dij , 1000000000 ); Dopt dopt[2][bound_M]; int num[2] = { M , 0 }; int i_prev = 1; int i_curr = 0; { Dopt ( &dopt_curr )[bound_M] = dopt[i_curr]; int& num_curr = num[i_curr]; FOR( j , 0 , M ){ CIN_ASSERT( Dij , 1 , bound_Dij ); dopt_curr[j] = Dopt( Dij , 0 ); } sort( dopt_curr , dopt_curr + num_curr ); swap( i_prev , i_curr ); } N--; int opt_curr; REPEAT( N ){ Dopt ( &dopt_prev )[bound_M] = dopt[i_prev]; Dopt ( &dopt_curr )[bound_M] = dopt[i_curr]; int num_prev = num[i_prev]; int& num_curr = num[i_curr]; num_curr = 0; FOR( j , 0 , M ){ CIN_ASSERT( Dij , 1 , bound_Dij ); if( dopt_prev[0].m_D <= Dij ){ Dopt& dopt_curr_j = dopt_curr[num_curr]; dopt_curr_j.m_D = Dij; dopt_curr_j.m_opt = bound_Dij; FOR( j_prev , 0 , num_prev ){ Dopt& dopt_prev_j_prev = dopt_prev[j_prev]; if( dopt_prev_j_prev.m_D > Dij ){ break; } opt_curr = max( Dij - dopt_prev_j_prev.m_D , dopt_prev_j_prev.m_opt ); if( dopt_curr_j.m_opt > opt_curr ){ dopt_curr_j.m_opt = opt_curr; } } num_curr++; } } if( num_curr == 0 ){ RETURN( -1 ); } sort( dopt_curr , dopt_curr + num_curr ); swap( i_prev , i_curr ); } int num_last = num[i_prev]; Dopt ( &dopt_last )[bound_M] = dopt[i_prev]; int answer = dopt_last[0].m_opt; FOR( j , 0 , num_last ){ if( answer > dopt_last[j].m_opt ){ answer = dopt_last[j].m_opt; } } RETURN( answer ); }