#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct FenwickTree { explicit FenwickTree(const int n, const Abelian ID = 0) : n(n), ID(ID), data(n, ID) {} void add(int idx, const Abelian val) { for (; idx < n; idx |= idx + 1) { data[idx] += val; } } Abelian sum(int idx) const { Abelian res = ID; for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) { res += data[idx]; } return res; } Abelian sum(const int left, const int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= ID) return 0; int res = 0, exponent = 1; while (exponent <= n) exponent <<= 1; for (int mask = exponent >> 1; mask > 0; mask >>= 1) { const int idx = res + mask - 1; if (idx < n && data[idx] < val) { val -= data[idx]; res += mask; } } return res; } private: const int n; const Abelian ID; std::vector data; }; vector>> enu(const vector& a, const vector& b) { const int n = a.size(); vector>> res(n + 1); REP(bit, 1 << n) { ll cost = 0, value = 0; REP(i, n) { if (bit >> i & 1) { cost += a[i]; value += b[i]; } } res[__builtin_popcount(bit)].emplace_back(cost, value); } return res; } int main() { int n, k, l, p; cin >> n >> k >> l >> p; vector a(n), b(n); REP(i, n) cin >> a[i] >> b[i]; auto le = enu(vector(a.begin(), next(a.begin(), n / 2)), vector(b.begin(), next(b.begin(), n / 2))); auto ri = enu(vector(next(a.begin(), n / 2), a.end()), vector(next(b.begin(), n / 2), b.end())); vector values; values.reserve(1 << ((n + 1) / 2)); for (const vector>& ri_i : ri) { for (const auto& [_, v] : ri_i) values.emplace_back(v); } sort(ALL(values)); values.erase(unique(ALL(values)), values.end()); const int m = values.size(); int ri_index = 0; vector> prs; ll ans = 0; for (int i = min(static_cast(le.size()) - 1, k); i >= 0; --i) { for (; ri_index < ri.size() && ri_index + i <= k; ++ri_index) { const int s = prs.size(); sort(ALL(ri[ri_index])); prs.resize(s + ri[ri_index].size()); copy(ALL(ri[ri_index]), next(prs.begin(), s)); inplace_merge(prs.begin(), next(prs.begin(), s), prs.end()); } FenwickTree bit(m); int j = 0; sort(ALL(le[i]), greater>()); for (const auto [c_le, v_le] : le[i]) { for (; j < prs.size() && prs[j].first + c_le <= l; ++j) { bit.add(lower_bound(ALL(values), prs[j].second) - values.begin(), 1); } ans += bit.sum(lower_bound(ALL(values), p - v_le) - values.begin(), m); // cout << '{' << c_le << ',' << v_le << "} " << ans << '\n'; } // cout << i << ' ' << ri_index - 1 << ": " << ans << '\n'; } cout << ans << '\n'; // int answer = 0; // const vector>> enu_all = enu(a, b); // REP(i, k + 1) { // for (const auto& [c, v] : enu_all[i]) { // answer += c <= l && v >= p; // } // } // assert(answer == ans); return 0; }