// #define _GLIBCXX_DEBUG #pragma GCC optimize ( "O3" ) #pragma GCC target ( "avx" ) #include using namespace std; using uint = unsigned int; using ll = long long; #define TYPE_OF( VAR ) remove_const::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO ) \ ll ANSWER[LENGTH]; \ ll ANSWER_INV[LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_I ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \ ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV; \ FOREQINV( i , MAX_I - 1 , 0 ){ \ ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO; \ } \ } \ \ // 通常の二分探索 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MAXIMUM; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ \ // 二進法の二分探索 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \ } \ \ template inline T Absolute( const T& a ){ return a > 0 ? a : - a; } template inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; } // 区間最大値取得可能なBITを頑張って実装したのですが1点更新しかできないパターンだった、 // というのを2回繰り返してとても疲弊したので、遅延セグ木の実装は今回諦めてペタリします。。 #include using namespace atcoder; inline CEXPR( int , bound , 200000 ); // laze_segtree用のデータ inline int op( int m , int n ) { return m < n ? n : m;} // 0は負数も考える設定だとunitでないことに注意 inline int unit() { return -bound-1; } int main() { UNTIE; CIN( string , S ); int size = S.size(); ASSERT( size , 1 , bound ); // Sの長さi+jの始切片の長さjの終切片がSの長さjの始切片と一致するようなj<=iの最大値 static int j_update[bound + 1]; // 再帰の都合まずj<=iという条件を無視して計算する j_update[0] = size; int j_curr = 0; int j_lim , j_sub , j_update_j_sub; FOREQ( i , 1 , size ){ int& j_update_i = j_update[i]; j_update_i = i; j_lim = size - i; while( j_curr < j_lim ){ if( S.substr( j_curr , 1 ) != S.substr( i + j_curr , 1 ) ){ j_update_i = j_curr; break; } j_curr++; } if( j_curr != 0 ){ j_sub = 1; j_update_j_sub = j_update[j_sub]; while( j_sub + j_update_j_sub < j_curr ){ j_update[++i] = j_update_j_sub; j_sub++; j_update_j_sub = j_update[j_sub]; } j_curr -= j_sub; } } // 最大値を記録したjごとにiを格納 static set i_update[bound + 1] = {}; // 最大値を記録したjを渡らせてiを格納 set i_update_total{}; // 条件j<=iを反映 FOREQ( i , 0 , size ){ int& j_update_i = j_update[i]; if( j_update_i > i ){ j_update_i = i; } if( j_update_i > 0 ){ i_update[j_update_i].insert( i ); i_update_total.insert( i ); } } // i >= j に対し // a(i,j) := (TがSの始切片かつ|T|=iかつ|U|=jとなる時の最小操作数) // i > jかつUがTの終切片 -> a(i,j) = min( a(i-1,j) + 1 , a(i-j,j) + 1 ) // i > jかつUがTの終切片でない -> a(i,j) = a(i-1,j) + 1 // a(i,i) = min( int j = 0 ; j < i ; j++ ) a(i,j) + 1 // dp(i,j) := i - a(i,j) // i > jかつ(Sの長さiの始切片の長さjの終切片がSの長さjの始切片) -> dp(i,j) = max( dp(i-1,j) , dp(i-j,j)+(j-1) ) // i > jかつ(Sの長さiの始切片の長さjの終切片がSの長さjの始切片) -> dp(i,j) = dp(i-1,j) // dp(i,i) = max( int j = 0 ; j < i ; j++ ) dp(i,j) - 1 // max_{j'<=j} dp(i,j')の値を(j,i)に関する辞書式順序で計算してopt[i]に格納 lazy_segtree opt( size + 1 ); // a(i,0)=iよりd(i,0) = 0 // unitが入ってしまっているので0で初期化が必要 opt.apply( 0 , size + 1 , 0 ); int current_update , i; set::iterator itr_i , end_i; bool updating; // 最後が操作Cであることはないのでsize未満までで良い FOR( j , 1 , size ){ // 右辺はmax_{j'& i_update_j = i_update[j]; FOR_ITR( i_update_j , itr_j , end_j ){ // dp(i,j+1)以降はSの長さi+jの始切片の長さjの終切片がSの長さjの始切片と一致することの寄与がない i_update_total.erase( *itr_j ); } } // size - ( max_{j'<=size-1} dp(size,j') ) = min_{j'