import sys, math from bisect import bisect_left, bisect_right, insort input = sys.stdin.readline """ * Sorted MultiSet from : https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py ref : https://github.com/tatyam-prime/SortedSet ref : https://qiita.com/tatyam/items/492c70ac4c955c055602 """ from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans """ Main Code """ N = int(input()) K = list(map(int, input().split())) T = [0] * N A = [[] for _ in [0] * N] st = set([]) for i in range(N): T[i] = int(input()) A[i] = sorted(map(int, input().split())) st |= set(A[i]) Alis = sorted(st) def check(m): P = []; q_max = 0 for lis in A: s = len(lis) - bisect_left(lis, m) if(s < len(lis)): P.append(s) elif(q_max < s): q_max = s P.sort() if not(P): return True smst = SortedMultiset(K[len(P):]) if(len(smst) and q_max >= smst[0]): return True for i in range(len(P) - 1, -1, -1): u = K[i] if not(len(smst)) else min(smst[0], K[i]) if(P[i] >= u): return True elif(P[i] < u - 1): return False; elif(len(smst) and P[i] == smst[0] - 1 and q_max >= K[i]): return True elif(i == 0): return False elif(not(len(smst)) or P[i] < smst[0] - 1): continue smst.discard(smst[0]) smst.add(K[i]) return True ok = 0 ng = len(st) while(ng - ok > 1): t = (ok + ng) >> 1 if check(Alis[t]): ok = t else: ng = t ans = Alis[ok] print(ans)