#line 2 "nachia\\fps\\formal-power-series-struct.hpp" #include #include #include #include #include #line 3 "nachia\\math-modulo\\modulo-primitive-root.hpp" #include namespace nachia{ template struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x class Comb{ private: std::vector F; std::vector iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 1 "nachia\\fps\\ntt-acl.hpp" #line 2 "nachia\\fps\\ntt-interface.hpp" namespace nachia { template struct NttInterface{ template void Butterfly(Iter, int) const {} template void IButterfly(Iter, int) const {} template void BitReversal(Iter a, int N) const { for(int i=0, j=0; j>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #line 1 "nachia\\misc\\bit-operations.hpp" #line 4 "nachia\\misc\\bit-operations.hpp" namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else int res = 0; for(int d=32; d>=0; d>>=1) if(x >> d){ res |= d; x >>= d; } return res; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return msb_idx(x & -x); #endif } } #line 5 "nachia\\fps\\ntt-acl.hpp" #include #line 8 "nachia\\fps\\ntt-acl.hpp" #include namespace nachia{ constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } template struct NttFromAcl : NttInterface { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array root; std::array iroot; std::array rate2; std::array irate2; std::array rate3; std::array irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template void Butterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1< void IButterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i> struct FormalPowerSeriesNTT { public: using MyType = FormalPowerSeriesNTT; static constexpr unsigned int MOD = Elem::mod(); static const NttInst nttInst; private: using u32 = unsigned int; static const u32 zeta = nachia::PrimitiveRoot::GetVal(); static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb comb; std::vector a; public: unsigned int size() const noexcept { return a.size(); } Elem& operator[](unsigned int x) noexcept { return a[x]; } const Elem& operator[](unsigned int x) const noexcept { return a[x]; } Elem get_coeff(unsigned int x) const{ return (x < size()) ? a[x] : ZeroElem(); } static Comb& GetComb() { return comb; } MyType& removeLeadingZeros(){ unsigned int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if(a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FormalPowerSeriesNTT(){ a = { }; } FormalPowerSeriesNTT(unsigned int new_size) : a(new_size, ZeroElem()) {} FormalPowerSeriesNTT(std::vector&& src) : a(std::move(src)) {} FormalPowerSeriesNTT(const std::vector& src) : a(src) {} MyType& ntt() { int N = 1; while (N < (int)size()) N *= 2; a.resize(N, ZeroElem()); nttInst.Butterfly(a.begin(), N); return *this; } MyType& intt() { nttInst.IButterfly(a.begin(), a.size()); Elem invN = Elem(size()).inv(); for(u32 i=0; i= r) return MyType(); MyType res(r - l); for(int i=l; i upper = lower MyType& capSize(int lower, int upper = -1) { if(upper < 0) upper = lower; if(upper <= (int)size()) a.resize(upper); if((int)size() <= lower) a.resize(lower, ZeroElem()); return *this; } MyType& mulEach(const MyType& other, size_t maxi = ~(size_t)0){ maxi = std::min(maxi, (size_t)std::min(size(), other.size())); for(size_t i=0; i 30) return convolution(b,a); if(sz < 0) sz = std::max(0, (int)(a.size() + b.size()) - 1); std::vector res(sz); for(u32 i=0; i=1; i--) a[i] = a[i-1] * comb.invOf(i); a[0] = ZeroElem(); return *this; } MyType copied() const { return MyType(*this); } MyType log(unsigned int sz){ assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), copied().difference(), sz-1).integral(); } MyType exp(unsigned int sz){ MyType res = MyType(std::vector{ OneElem() }); while(res.size() < sz){ auto z = res.size(); auto tmp = res.log(z*2); tmp[0] = -OneElem(); for(u32 i=0; i= (n-1) / k + 1) return MyType(n); MyType res = clip(ctz, n); Elem a0 = res[0]; res.times(a0.inv()); res = res.log(n); res.times(Elem(k)); res = res.exp(n); res.times(a0.pow(k)); ctz *= k; return res; } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string to_string() const { std::string res = "["; for(auto x : a){ res += " "; res += std::to_string(x.val()); } res += " ]"; return res; } std::vector get_vector_moved(){ std::vector res = std::move(a); a.clear(); return res; } MyType ax_plus_b(Elem a, Elem b) const { auto buf = MyType(size() + 1); for(u32 i=0; ia[i] * b; for(u32 i=0; ia[i] * a; return buf; } MyType operator+(const MyType& r) const { auto sz = std::max(this->size(), r.size()); MyType res(sz); for(u32 i=0; isize(); i++) res[i] += this->operator[](i); for(u32 i=0; isize(), r.size()); MyType res(sz); for(u32 i=0; isize(); i++) res[i] += this->operator[](i); for(u32 i=0; i=0; i--) res = res * x + a[i]; return res; } }; template Comb FormalPowerSeriesNTT::comb; template const NttInst FormalPowerSeriesNTT::nttInst; } // namespace nachia #line 5 "nachia\\linear\\simple-matrix.hpp" namespace nachia{ template struct SimpleMatrix{ private: int h; int w; std::vector elems; public: SimpleMatrix(int new_h=0, int new_w=0){ h = new_h; w = new_w; elems.assign(h * w, 0); } SimpleMatrix(SimpleMatrix const&) = default; int numRow() const { return h; } int numColumn() const { return w; } int height() const { return numRow(); } int width() const { return numColumn(); } typename std::vector::iterator operator[](int y){ return elems.begin() + (y*w); } typename std::vector::const_iterator operator[](int y) const { return elems.begin() + (y*w); } static SimpleMatrix Identity(int idx, Elem One){ auto res = SimpleMatrix(idx, idx); for(int i=0; i SimpleMatrix PRecursiveMatrixProduct( SimpleMatrix> p, unsigned long long idx ){ struct ShiftOfSamplingPointsOfPolynomialUpdate{ using Fps = FormalPowerSeriesNTT; int n; int N2; Fps iF, F, iFI, iFIntt1, iFntt; std::vector iFIntt2s; ShiftOfSamplingPointsOfPolynomialUpdate(int n, std::vector sh){ this->n = n; N2 = 1; while(N2 < n*2) N2 *= 2; iF = Fps(n); F = Fps(n); F[0] = 1; for(int i=1; i=1; i--) iF[i-1] = iF[i] * Elem::raw(i); iFI = Fps(n); for(int i=0; i> calc(const std::vector& points){ Fps P(N2); for(int i=0; i> res2(iFIntt2s.size()); for(size_t shi=0; shi> res; res.resize(h*h); for(auto& a : res) a.resize(h); u64 a = 1, b = 1; for(int i=0; i SimpleMatrix { SimpleMatrix res(h, h); for(int y=0; y SimpleMatrix { SimpleMatrix g(h, h); for(int y=0; y sh(3); sh[0] = Elem(b); sh[1] = Elem(a) / Elem(maxA); sh[2] = sh[0] + sh[1]; std::vector>> shbuf(h*h); auto shman = ShiftOfSamplingPointsOfPolynomialUpdate(b, sh); for(int i=0; i> resbuf; resbuf.assign(h*h, std::vector(b*2)); for(int i=0; i ans = SimpleMatrix::Identity(h, Elem::raw(1)); while(pos + maxA <= idx){ ans = EvalL(pos / maxA) * ans; pos += maxA; } while(pos < idx){ ans = EvalP(pos++) * ans; } return ans; } } // namespace nachia #line 2 "nachia\\misc\\fastio.hpp" #include #include #include #line 6 "nachia\\misc\\fastio.hpp" namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar(){ if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace(){ while(isspace(seekChar())) p++; } uint32_t nextU32(){ skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32(){ skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64(){ skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64(){ skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar(){ skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest){ dest = nextU32(); return *this; } MyType& operator>>(int& dest){ dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long& dest){ dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long long& dest){ dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest){ dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 3 "Main.cpp" #include int main(){ using Modint = atcoder::static_modint<998244353>; using Polynomial = nachia::FormalPowerSeriesNTT; using PolynomialMat = nachia::SimpleMatrix; using nachia::cin, nachia::cout; auto MatMod = [&](const PolynomialMat& mat, const Polynomial& mod) -> PolynomialMat { int n = mat.height(); PolynomialMat res(n, n); int maxlen = 0; for(int i=0; i> T; if(T <= 5){ for(int t=0; t> N >> K; if(K >= 998244353){ cout << "0\n"; continue; } PolynomialMat M_nX = PolynomialMat(2,2); M_nX[0][0] = std::vector{ Modint(N) * 2 , -Modint(2) }; // 2N - 2k M_nX[0][1] = std::vector{ 0, (Modint(N)*2+1) / 2, -Modint(1) / 2 }; // (2N+1)k/2 - k^2/2 M_nX[1][0] = std::vector{ 1 }; M_nX[1][1] = std::vector{}; auto ansMat = nachia::PRecursiveMatrixProduct(M_nX, K); Modint ans = ansMat[0][0]; cout << ans.val() << '\n'; } } else{ int MAX_K = 100000; int MATRIX_QUERY = 1001001001; std::vector> NK(T); for(auto& nk : NK) cin >> nk.first >> nk.second; std::vector> queries; for(int k=0; k FX; std::vector KX; FX.assign(segN*2, PolynomialMat::Identity(2, Polynomial(std::vector{1}))); KX.assign(segN*2, Polynomial(std::vector{1})); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second == MATRIX_QUERY){ int k = queries[q].first; FX[segN+q][0][0] = std::vector{ -Modint(k)*2, Modint(2) }; // 2N - 2k FX[segN+q][0][1] = std::vector{ Modint(k)*(1-k) / 2, Modint(k) }; // Nk + k(1-k)/2 FX[segN+q][1][0] = std::vector{ 1 }; FX[segN+q][1][1] = std::vector{}; } else{ unsigned long long N = NK[queries[q].second].first; KX[segN+q] = Polynomial(std::vector{ -Modint(N), 1 }); // x - N } } for(int i=segN-1; i>=1; i--) FX[i] = FX[i*2+1] * FX[i*2]; for(int i=segN-1; i>=1; i--) KX[i] = KX[i*2+1] * KX[i*2]; std::vector FXmodKX(segN*2); FXmodKX[1] = MatMod(PolynomialMat::Identity(2, Polynomial(std::vector{1})), KX[1]); for(int i=1; i<=segN-1; i++){ FXmodKX[i*2] = MatMod(FXmodKX[i], KX[i*2]); FXmodKX[i*2+1] = MatMod(FX[i*2] * FXmodKX[i], KX[i*2+1]); } std::vector ans(T); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second != MATRIX_QUERY){ ans[queries[q].second] = FXmodKX[segN+q][0][0].eval(0); } } for(int i=0; i