#line 1 "library/my_template.hpp" #if defined(LOCAL) #include #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using pi = pair; using vi = vector; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vec(type, name, ...) vector name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template T SUM(const vector &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T pick(deque &que) { T a = que.front(); que.pop_front(); return a; } template T pick(pq &que) { T a = que.top(); que.pop(); return a; } template T pick(pqg &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template T pick(vc &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template vc bincount(const vc &A, int size) { vc C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template vector argsort(const vector &A) { vector ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { int n = len(I); vc B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #endif #line 1 "library/other/io.hpp" // based on yosupo's fastio #include namespace fastio { // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_write : public decltype(has_write_impl::check(std::declval())) { }; struct has_read_impl { template static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_read : public decltype(has_read_impl::check(std::declval())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template ::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template void read_single_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); read_single(x); read_single_tuple(t); } } template bool read_single(tuple &tpl) { read_single_tuple(tpl); return true; } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template ::value>::type * = nullptr> inline void write(T x) { x.write(); } template void write(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair val) { write(val.first); write(' '); write(val.second); } template void write_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get(t); write(x); write_tuple(t); } } template bool write(tuple tpl) { write_tuple(tpl); return true; } template void write(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/mod/modint.hpp" template struct modint { int val; constexpr modint(ll x = 0) noexcept { if (0 <= x && x < mod) val = x; else { x %= mod; val = (x < 0 ? x + mod : x); } } bool operator<(const modint &other) const { return val < other.val; } // To use std::map modint &operator+=(const modint &p) { if ((val += p.val) >= mod) val -= mod; return *this; } modint &operator-=(const modint &p) { if ((val += mod - p.val) >= mod) val -= mod; return *this; } modint &operator*=(const modint &p) { val = (int)(1LL * val * p.val % mod); return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-val); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } void write() { fastio::printer.write(val); } void read() { fastio::scanner.read(val); } static constexpr int get_mod() { return mod; } }; struct ArbitraryModInt { static constexpr bool is_modint = true; int val; ArbitraryModInt() : val(0) {} ArbitraryModInt(int64_t y) : val(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {} bool operator<(const ArbitraryModInt &other) const { return val < other.val; } // To use std::map static int &get_mod() { static int mod = 0; return mod; } static void set_mod(int md) { get_mod() = md; } ArbitraryModInt &operator+=(const ArbitraryModInt &p) { if ((val += p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator-=(const ArbitraryModInt &p) { if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator*=(const ArbitraryModInt &p) { long long a = (long long)val * p.val; int xh = (int)(a >> 32), xl = (int)a, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod())); val = m; return *this; } ArbitraryModInt &operator/=(const ArbitraryModInt &p) { *this *= p.inverse(); return *this; } ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); } ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; } ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; } ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; } ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; } bool operator==(const ArbitraryModInt &p) const { return val == p.val; } bool operator!=(const ArbitraryModInt &p) const { return val != p.val; } ArbitraryModInt inverse() const { int a = val, b = get_mod(), u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return ArbitraryModInt(u); } ArbitraryModInt pow(int64_t n) const { ArbitraryModInt ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } void write() { fastio::printer.write(val); } void read() { fastio::scanner.read(val); } }; template mint inv(int n) { static const int mod = mint::get_mod(); static vector dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (int(dat.size()) <= n) { int k = dat.size(); auto q = (mod + k - 1) / k; int r = k * q - mod; dat.emplace_back(dat[r] * mint(q)); } return dat[n]; } template mint fact(int n) { static const int mod = mint::get_mod(); static vector dat = {1, 1}; assert(0 <= n); if (n >= mod) return 0; while (int(dat.size()) <= n) { int k = dat.size(); dat.emplace_back(dat[k - 1] * mint(k)); } return dat[n]; } template mint fact_inv(int n) { static const int mod = mint::get_mod(); static vector dat = {1, 1}; assert(-1 <= n && n < mod); if (n == -1) return mint(0); while (int(dat.size()) <= n) { int k = dat.size(); dat.emplace_back(dat[k - 1] * inv(k)); } return dat[n]; } template mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv(xs)); } template mint multinomial(Head &&head, Tail &&... tail) { return fact(head) * fact_invs(std::forward(tail)...); } template mint C_dense(int n, int k) { static vvc C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if (dense) return C_dense(n, k); if (!large) return fact(n) * fact_inv(k) * fact_inv(n - k); k = min(k, n - k); mint x(1); FOR(i, k) { x *= mint(n - i); } x *= fact_inv(k); return x; } template mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv(n) * fact(k) * fact(n - k); return mint(1) / C(n, k); } // [x^d] (1-x) ^ {-n} の計算 template mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C(n + d - 1, d); } using modint107 = modint<1000000007>; using modint998 = modint<998244353>; using amint = ArbitraryModInt; #line 2 "library/poly/count_terms.hpp" template int count_terms(const vc& f){ int t = 0; FOR(i, len(f)) if(f[i] != mint(0)) ++t; return t; } #line 2 "library/mod/mod_inv.hpp" // long でも大丈夫 ll mod_inv(ll val, ll mod) { val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 1 "library/poly/convolution_naive.hpp" template vector convolution_naive(const vector& a, const vector& b) { int n = int(a.size()), m = int(b.size()); vector ans(n + m - 1); if (n < m) { FOR(j, m) FOR(i, n) ans[i + j] += a[i] * b[j]; } else { FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; } return ans; } #line 2 "library/poly/ntt.hpp" template struct ntt_info { static constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } static constexpr int rank2 = bsf_constexpr(mint::get_mod() - 1); array root; array iroot; array rate2; array irate2; array rate3; array irate3; ntt_info() { int g = primitive_root(mint::get_mod()); root[rank2] = mint(g).pow((mint::get_mod() - 1) >> rank2); iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } constexpr int primitive_root(int m) { if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 880803841) return 26; if (m == 998244353) return 3; if (m == 924844053) return 5; return -1; } }; template void ntt(vector& a, bool inverse) { int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); static const ntt_info info; if (!inverse) { int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= info.rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::get_mod() * mint::get_mod(); auto a0 = 1ULL * a[i + offset].val; auto a1 = 1ULL * a[i + offset + p].val * rot.val; auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val; auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val; auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val * imag.val; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= info.rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::get_mod() + l.val - r.val) * irot.val; ; } irot *= info.irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val; auto a1 = 1ULL * a[i + offset + 1 * p].val; auto a2 = 1ULL * a[i + offset + 2 * p].val; auto a3 = 1ULL * a[i + offset + 3 * p].val; auto a2na3iimag = 1ULL * mint((mint::get_mod() + a2 - a3) * iimag.val).val; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::get_mod() - a1) + a2na3iimag) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + (mint::get_mod() - a2) + (mint::get_mod() - a3)) * irot2.val; a[i + offset + 3 * p] = (a0 + (mint::get_mod() - a1) + (mint::get_mod() - a2na3iimag)) * irot3.val; } irot *= info.irate3[topbit(~s & -~s)]; } len -= 2; } } } } #line 1 "library/poly/fft.hpp" namespace CFFT { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector rts = {{0, 0}, {1, 0}}; vector rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } } // namespace CFFT #line 7 "library/poly/convolution.hpp" template vector convolution_ntt(vector a, vector b) { int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if ((n + m - 3) <= sz / 2) { auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.resize(n + m - 1); c[n + m - 2] = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if (same) { b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template vector convolution_garner(const vector& a, const vector& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static const long long nttprimes[] = {754974721, 167772161, 469762049}; using mint0 = modint<754974721>; using mint1 = modint<167772161>; using mint2 = modint<469762049>; vc a0(n), b0(m); vc a1(n), b1(m); vc a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt(a0, b0); auto c1 = convolution_ntt(a1, b1); auto c2 = convolution_ntt(a2, b2); static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = mint1(nttprimes[0]).inverse().val; static const long long m01_inv_m2 = mint2(m01).inverse().val; static const int mod = mint::get_mod(); auto garner = [&](mint0 x0, mint1 x1, mint2 x2) -> mint { int r0 = x0.val, r1 = x1.val, r2 = x2.val; int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * mint2(m01_inv_m2); return mint(r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val); }; vc c(len(c0)); FOR(i, len(c)) c[i] = garner(c0[i], c1[i], c2[i]); return c; } template vc convolution_fft(const vc& a, const vc& b) { using C = CFFT::C; int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; CFFT::ensure_base(nbase); int sz = 1 << nbase; vector fa(sz); for (int i = 0; i < sz; i++) { int x = (i < (int)a.size() ? a[i] : 0); int y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } CFFT::fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } CFFT::fft(fa, sz >> 1); vector ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } vector convolution(const vector& a, const vector& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); ll abs_sum_a = 0, abs_sum_b = 0; ll LIM = 1e15; FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i])); FOR(i, n) abs_sum_b = min(LIM, abs_sum_b + abs(b[i])); if (i128(abs_sum_a) * abs_sum_b < 1e15) { vc c = convolution_fft(a, b); vc res(len(c)); FOR(i, len(c)) res[i] = ll(floor(c[i] + .5)); return res; } static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1); static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2); static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3); using mint1 = modint; using mint2 = modint; using mint3 = modint; vc a1(n), b1(m); vc a2(n), b2(m); vc a3(n), b3(m); FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i]; FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i]; auto c1 = convolution_ntt(a1, b1); auto c2 = convolution_ntt(a2, b2); auto c3 = convolution_ntt(a3, b3); vc c(n + m - 1); FOR(i, n + m - 1) { u64 x = 0; x += (c1[i].val * i1) % MOD1 * M2M3; x += (c2[i].val * i2) % MOD2 * M1M3; x += (c3[i].val * i3) % MOD3 * M1M2; ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } template enable_if_t::value, vc> convolution( const vc& a, const vc& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); return convolution_ntt(a, b); } template enable_if_t::value, vc> convolution( const vc& a, const vc& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); return convolution_garner(a, b); } #line 2 "library/poly/integrate.hpp" template vc integrate(const vc& f) { vc g(len(f) + 1); FOR3(i, 1, len(g)) g[i] = f[i - 1] * inv(i); return g; } #line 2 "library/poly/differentiate.hpp" template vc differentiate(const vc& f) { if (len(f) <= 1) return {}; vc g(len(f) - 1); FOR(i, len(g)) g[i] = f[i + 1] * mint(i + 1); return g; } #line 6 "library/poly/fps_exp.hpp" template enable_if_t::value, vc> fps_exp(vc& f) { if (count_terms(f) <= 300) return fps_exp_sparse(f); return fps_exp_dense(f); } template enable_if_t::value, vc> fps_exp(vc& f) { if (count_terms(f) <= 1000) return fps_exp_sparse(f); return fps_exp_dense(f); } template vc fps_exp_sparse(vc& f) { if (len(f) == 0) return {mint(1)}; assert(f[0] == 0); int N = len(f); // df を持たせる vc> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i - 1, mint(i) * f[i]); vc F(N); F[0] = 1; FOR(n, 1, N) { mint rhs = 0; for (auto&& [k, fk]: dat) { if (k > n - 1) break; rhs += fk * F[n - 1 - k]; } F[n] = rhs * inv(n); } return F; } template enable_if_t::value, vc> fps_exp_dense( vc h) { const int L = len(h); assert(L > 0 && h[0] == mint(0)); int LOG = 0; while (1 << LOG < L) ++LOG; h.resize(1 << LOG); auto dh = differentiate(h); vc f = {1}, g = {1}; int m = 1; vc p; FOR(LOG) { p = convolution(f, g); p.resize(m); p = convolution(p, g); p.resize(m); g.resize(m); FOR(i, m) g[i] += g[i] - p[i]; p = {dh.begin(), dh.begin() + m - 1}; p = convolution(f, p); p.resize(m + m - 1); FOR(i, m + m - 1) p[i] = -p[i]; FOR(i, m - 1) p[i] += mint(i + 1) * f[i + 1]; p = convolution(p, g); p.resize(m + m - 1); FOR(i, m - 1) p[i] += dh[i]; p = integrate(p); FOR(i, m + m) p[i] = h[i] - p[i]; p[0] += mint(1); f = convolution(f, p); f.resize(m + m); m += m; } f.resize(L); return f; } // ntt 素数専用実装。長さ n の FFT を利用して 2n の FFT // を行うなどの高速化をしている。 template enable_if_t::value, vc> fps_exp_dense( vc& f) { const int n = len(f); assert(n > 0 && f[0] == mint(0)); vc b = {1, (1 < n ? f[1] : 0)}; vc c = {1}, z1, z2 = {1, 1}; while (len(b) < n) { int m = len(b); auto y = b; y.resize(2 * m); ntt(y, 0); z1 = z2; vc z(m); FOR(i, m) z[i] = y[i] * z1[i]; ntt(z, 1); FOR(i, m / 2) z[i] = 0; ntt(z, 0); FOR(i, m) z[i] *= -z1[i]; ntt(z, 1); c.insert(c.end(), z.begin() + m / 2, z.end()); z2 = c; z2.resize(2 * m); ntt(z2, 0); vc x(f.begin(), f.begin() + m); FOR(i, len(x) - 1) x[i] = x[i + 1] * mint(i + 1); x.back() = 0; ntt(x, 0); FOR(i, m) x[i] *= y[i]; ntt(x, 1); FOR(i, m - 1) x[i] -= b[i + 1] * mint(i + 1); x.resize(m + m); FOR(i, m - 1) x[m + i] = x[i], x[i] = 0; ntt(x, 0); FOR(i, m + m) x[i] *= z2[i]; ntt(x, 1); FOR_R(i, len(x) - 1) x[i + 1] = x[i] * inv(i + 1); x[0] = 0; FOR3(i, m, min(n, m + m)) x[i] += f[i]; FOR(i, m) x[i] = 0; ntt(x, 0); FOR(i, m + m) x[i] *= y[i]; ntt(x, 1); b.insert(b.end(), x.begin() + m, x.end()); } b.resize(n); return b; } #line 2 "library/poly/fps_log.hpp" #line 4 "library/poly/fps_inv.hpp" template vc fps_inv_sparse(const vc& f) { assert(f[0] != mint(0)); int N = len(f); vc> dat; FOR3(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc g(N); mint g0 = mint(1) / f[0]; g[0] = g0; FOR3(n, 1, N) { mint rhs = 0; for (auto&& [k, fk]: dat) { if (k > n) break; rhs -= fk * g[n - k]; } g[n] = rhs * g0; } return g; } template enable_if_t::value, vc> fps_inv_dense( const vc& F) { assert(F[0] != mint(0)); vc G = {mint(1) / F[0]}; G.reserve(len(F)); ll N = len(F), n = 1; while (n < N) { vc f(2 * n), g(2 * n); FOR(i, min(N, 2 * n)) f[i] = F[i]; FOR(i, n) g[i] = G[i]; ntt(f, false); ntt(g, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR(i, n) f[i] = 0; ntt(f, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR3(i, n, 2 * n) G.eb(f[i] * mint(-1)); n *= 2; } G.resize(N); return G; } template enable_if_t::value, vc> fps_inv_dense( const vc& F) { int N = len(F); assert(F[0] != mint(0)); vc R = {mint(1) / F[0]}; vc p; int m = 1; while (m < N) { p = convolution(R, R); p.resize(m + m); vc f = {F.begin(), F.begin() + min(m + m, N)}; p = convolution(p, f); R.resize(m + m); FOR(i, m + m) R[i] = R[i] + R[i] - p[i]; m += m; } R.resize(N); return R; } template enable_if_t::value, vc> fps_inv( const vc& f) { if (count_terms(f) <= 200) return fps_inv_sparse(f); return fps_inv_dense(f); } template enable_if_t::value, vc> fps_inv( const vc& f) { if (count_terms(f) <= 700) return fps_inv_sparse(f); return fps_inv_dense(f); } #line 5 "library/poly/fps_log.hpp" template vc fps_log_dense(const vc& f) { assert(f[0] == mint(1)); ll N = len(f); vc df = f; FOR(i, N) df[i] *= mint(i); df.erase(df.begin()); auto f_inv = fps_inv(f); auto g = convolution(df, f_inv); g.resize(N - 1); g.insert(g.begin(), 0); FOR(i, N) g[i] *= inv(i); return g; } template vc fps_log_sparse(const vc& f){ int N = f.size(); vc> dat; FOR(i, 1, N) if(f[i] != mint(0)) dat.eb(i, f[i]); vc F(N); vc g(N - 1); for (int n = 0; n < N - 1; ++n) { mint rhs = mint(n + 1) * f[n + 1]; for (auto &&[i, fi]: dat) { if (i > n) break; rhs -= fi * g[n - i]; } g[n] = rhs; F[n + 1] = rhs * inv(n + 1); } return F; } template vc fps_log(const vc& f){ assert(f[0] == mint(1)); if(count_terms(f) <= 200) return fps_log_sparse(f); return fps_log_dense(f); } #line 5 "library/poly/fps_pow.hpp" // fps の k 乗を求める。k >= 0 の前提である。 // 定数項が 1 で、k が mint の場合には、fps_pow_1 を使うこと。 // ・dense な場合: log, exp を使う O(NlogN) // ・sparse な場合: O(NK) template vc fps_pow(const vc& f, ll k) { assert(0 <= k); int n = len(f); if(k==0){ vc g(n); g[0] = mint(1); return g; } int d = n; FOR_R(i, n) if (f[i] != 0) d = i; // d * k >= n if(d >= ceil(n,k)){ vc g(n); return g; } ll off = d * k; mint c = f[d]; mint c_inv = mint(1) / mint(c); vc g(n - off); FOR(i, n - off) g[i] = f[d + i] * c_inv; g = fps_pow_1(g, mint(k)); vc h(n); c = c.pow(k); FOR(i, len(g)) h[off + i] = g[i] * c; return h; } template vc fps_pow_1_sparse(const vc& f, mint K) { int N = len(f); vc> dat; FOR3(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc g(N); g[0] = 1; FOR(n, N - 1) { mint& x = g[n + 1]; for (auto&& [d, cf]: dat) { if (d > n + 1) break; mint t = cf * g[n - d + 1]; x += t * (K * mint(d) - mint(n - d + 1)); } x *= inv(n + 1); } return g; } template vc fps_pow_1_dense(const vc& f, mint K) { assert(f[0] == mint(1)); auto log_f = fps_log(f); FOR(i, len(f)) log_f[i] *= K; return fps_exp(log_f); } template vc fps_pow_1(const vc& f, mint K) { if (count_terms(f) <= 100) return fps_pow_1_sparse(f, K); return fps_pow_1_dense(f, K); } #line 2 "library/poly/from_log_differentiation.hpp" #line 2 "library/linalg/mat_mul.hpp" struct has_mod_impl { template static auto check(T&& x) -> decltype(x.get_mod(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_mod : public decltype(has_mod_impl::check(std::declval())) {}; template ::value>::type* = nullptr> vc> mat_mul(const vc>& A, const vc>& B) { const int mod = T::get_mod(); auto N = len(A), M = len(B), K = len(B[0]); vv(int, b, K, M); FOR(i, M) FOR(j, K) b[j][i] = B[i][j].val; vv(T, C, N, K); FOR(i, N) { FOR(j, K) { i128 sm = 0; FOR(m, M) { sm += ll(A[i][m].val) * b[j][m]; } C[i][j] = sm % mod; } } return C; } template ::value>::type* = nullptr> vc> mat_mul(const vc>& A, const vc>& B) { auto N = len(A), M = len(B), K = len(B[0]); vv(T, C, N, K); FOR(n, N) FOR(m, M) FOR(k, K) C[n][k] += A[n][m] * B[m][k]; return C; } #line 2 "library/alg/monoid/mul.hpp" template struct Monoid_Mul { using value_type = T; using X = T; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr X inverse(const X &x) noexcept { return X(1) / x; } static constexpr X unit() { return X(1); } static constexpr bool commute = true; }; #line 1 "library/ds/sliding_window_aggregation.hpp" template struct Sliding_Window_Aggregation { using X = typename Monoid::value_type; using value_type = X; int sz = 0; vc dat; vc cum_l; X cum_r; Sliding_Window_Aggregation() : cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {} int size() { return sz; } void push(X x) { ++sz; cum_r = Monoid::op(cum_r, x); dat.eb(x); } void pop() { --sz; cum_l.pop_back(); if (len(cum_l) == 0) { cum_l = {Monoid::unit()}; cum_r = Monoid::unit(); while (len(dat) > 1) { cum_l.eb(Monoid::op(dat.back(), cum_l.back())); dat.pop_back(); } dat.pop_back(); } } X lprod() { return cum_l.back(); } X rprod() { return cum_r; } X prod() { return Monoid::op(cum_l.back(), cum_r); } void debug() { print("swag"); print("dat", dat); print("cum_l", cum_l); print("cum_r", cum_r); } }; // 定数倍は目に見えて遅くなるので、queue でよいときは使わない template struct SWAG_deque { using X = typename Monoid::value_type; using value_type = X; int sz; vc dat_l, dat_r; vc cum_l, cum_r; SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {} int size() { return sz; } void push_back(X x) { ++sz; dat_r.eb(x); cum_r.eb(Monoid::op(cum_r.back(), x)); } void push_front(X x) { ++sz; dat_l.eb(x); cum_l.eb(Monoid::op(x, cum_l.back())); } void push(X x) { push_back(x); } void clear() { sz = 0; dat_l.clear(), dat_r.clear(); cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()}; } void pop_front() { if (sz == 1) return clear(); if (dat_l.empty()) rebuild(); --sz; dat_l.pop_back(); cum_l.pop_back(); } void pop_back() { if (sz == 1) return clear(); if (dat_r.empty()) rebuild(); --sz; dat_r.pop_back(); cum_r.pop_back(); } void pop() { pop_front(); } X lprod() { return cum_l.back(); } X rprod() { return cum_r.back(); } X prod() { return Monoid::op(cum_l.back(), cum_r.back()); } X prod_all() { return prod(); } void debug() { print("swag"); print("dat_l", dat_l); print("dat_r", dat_r); print("cum_l", cum_l); print("cum_r", cum_r); } private: void rebuild() { vc X; FOR_R(i, len(dat_l)) X.eb(dat_l[i]); X.insert(X.end(), all(dat_r)); clear(); int m = len(X) / 2; FOR_R(i, m) push_front(X[i]); FOR(i, m, len(X)) push_back(X[i]); assert(sz == len(X)); } }; #line 5 "library/poly/lagrange_interpolate_iota.hpp" // Input: f(0), ..., f(n-1) and c, m // Return: f(c), f(c+1), ..., f(c+m-1) // Complexity: M(n, n + m) template vc lagrange_interpolate_iota(vc &f, mint c, int m) { if (m <= 60) { vc ANS(m); FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i)); return ANS; } ll n = len(f); auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv(i) * fact_inv(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } // x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく vc b(n + m - 1); FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1)); a = convolution(a, b); Sliding_Window_Aggregation> swag; vc ANS(m); ll L = 0, R = 0; FOR(i, m) { while (L < i) { swag.pop(), ++L; } while (R - L < n) { swag.push(c + mint((R++) - n + 1)); } auto coef = swag.prod(); if (coef == 0) { ANS[i] = f[(c + i).val]; } else { ANS[i] = a[i + n - 1] * coef; } } return ANS; } // Input: f(0), ..., f(n-1) and c // Return: f(c) // Complexity: O(n) template mint lagrange_interpolate_iota(vc &f, mint c) { int n = len(f); if (int(c.val) < n) return f[c.val]; auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv(i) * fact_inv(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } vc lp(n + 1), rp(n + 1); lp[0] = rp[n] = 1; FOR(i, n) lp[i + 1] = lp[i] * (c - i); FOR_R(i, n) rp[i] = rp[i + 1] * (c - i); mint ANS = 0; FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1]; return ANS; } #line 4 "library/poly/prefix_product_of_poly.hpp" // A[k-1]...A[0] を計算する // アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs // 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp template vc> prefix_product_of_poly_matrix(vc>>& A, ll k) { int n = len(A); using MAT = vc>; auto shift = [&](vc& G, T x) -> vc { int d = len(G); vvv(T, H, d, n, n); FOR(i, n) FOR(j, n) { vc g(d); FOR(l, d) g[l] = G[l][i][j]; auto h = lagrange_interpolate_iota(g, x, d); FOR(l, d) H[l][i][j] = h[l]; } return H; }; auto evaluate = [&](vc& f, T x) -> T { T res = 0; T p = 1; FOR(i, len(f)) { res += f[i] * p; p *= x; } return res; }; ll deg = 1; FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1); vc G(deg + 1); ll v = 1; while (deg * v * v < k) v *= 2; T iv = T(1) / T(v); FOR(i, len(G)) { T x = T(v) * T(i); vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x); G[i] = mat; } for (ll w = 1; w != v; w *= 2) { T W = w; auto G1 = shift(G, W * iv); auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv); auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv); FOR(i, w * deg + 1) { G[i] = mat_mul(G1[i], G[i]); G2[i] = mat_mul(G3[i], G2[i]); } copy(G2.begin(), G2.end() - 1, back_inserter(G)); } vv(T, res, n, n); FOR(i, n) res[i][i] = 1; ll i = 0; while (i + v <= k) res = mat_mul(G[i / v], res), i += v; while (i < k) { vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i); res = mat_mul(mat, res); ++i; } return res; } // f[k-1]...f[0] を計算する template T prefix_product_of_poly(vc& f, ll k) { vc>> A(1); A[0].resize(1); A[0][0] = f; auto res = prefix_product_of_poly_matrix(A, k); return res[0][0]; } #line 2 "library/seq/kth_term_of_p_recursive.hpp" // a0, ..., a_{r-1} および f_0, ..., f_r を与える // a_r f_0(0) + a_{r-1}f_1(0) + ... = 0 // a_{r+1} f_0(1) + a_{r}f_1(1) + ... = 0 template T kth_term_of_p_recursive(vc a, vc>& fs, ll k) { int r = len(a); assert(len(fs) == r + 1); if (k < r) return a[k]; vc>> A; A.resize(r); FOR(i, r) A[i].resize(r); FOR(i, r) { // A[0][i] = -fs[i + 1]; for (auto&& x: fs[i + 1]) A[0][i].eb(-x); } FOR3(i, 1, r) A[i][i - 1] = fs[0]; vc den = fs[0]; auto res = prefix_product_of_poly_matrix(A, k - r + 1); reverse(all(a)); T ANS = 0; FOR(j, r) ANS += res[0][j] * a[j]; ANS /= prefix_product_of_poly(den, k - r + 1); return ANS; } #line 4 "library/poly/from_log_differentiation.hpp" // 対数微分 F'/F = a(x)/b(x) から F を復元する。 // a, b が sparse であれば、O(N(K1+K2)) 時間でできる template vc from_log_differentiation(int N, const vc& a, const vc& b) { assert(b[0] == mint(1)); using P = pair; vc

dat_a, dat_b; FOR(i, len(a)) if (a[i] != mint(0)) dat_a.eb(i, a[i]); FOR(i, 1, len(b)) if (b[i] != mint(0)) dat_b.eb(i, b[i]); vc f(N + 1); vc df(N); f[0] = mint(1); FOR(n, N) { mint v = 0; for (auto&& [i, bi]: dat_b) { if (i > n) break; v -= bi * df[n - i]; } for (auto&& [i, ai]: dat_a) { if (i > n) break; v += ai * f[n - i]; } df[n] = v; f[n + 1] = df[n] * inv(n + 1); } return f; } // F'/F = a/b の解の、[x^K]F を求める。右辺は低次の有理式。 template mint from_log_differentiation_kth(int K, vc& a, vc& b) { assert(b[0] == mint(1)); int r = max(len(a), len(b) - 1); vvc c(r + 1); FOR(i, r + 1) { mint c0 = 0, c1 = 0; if (i < len(b)) c0 += mint(r - i) * b[i]; if (i < len(b)) c1 += b[i]; if (0 <= i - 1 && i - 1 < len(b)) c0 -= a[i - 1]; c[i] = {c0, c1}; } auto f = from_log_differentiation(r - 1, a, b); mint ANS = kth_term_of_p_recursive(f, c, K); return ANS; } #line 6 "main.cpp" // #include "mod/factorial998.hpp" #line 2 "library/poly/poly_divmod.hpp" template pair, vc> poly_divmod(vc f, vc g) { assert(g.back() != 0); if (len(f) < len(g)) { return {{}, f}; } auto rf = f, rg = g; reverse(all(rf)), reverse(all(rg)); ll deg = len(rf) - len(rg) + 1; rf.resize(deg), rg.resize(deg); rg = fps_inv(rg); auto q = convolution(rf, rg); q.resize(deg); reverse(all(q)); auto h = convolution(q, g); FOR(i, len(f)) f[i] -= h[i]; while (len(f) > 0 && f.back() == 0) f.pop_back(); return {q, f}; } #line 3 "library/poly/multipoint.hpp" template struct SubproductTree { int m; int sz; vc> T; SubproductTree(const vc& x) { m = len(x); sz = 1; while (sz < m) sz *= 2; T.resize(2 * sz); FOR(i, sz) T[sz + i] = {1, (i < m ? -x[i] : 0)}; FOR3_R(i, 1, sz) T[i] = convolution(T[2 * i], T[2 * i + 1]); } vc mid_prod(vc& a, vc& b) { assert(len(a) >= len(b) && !b.empty()); if (min(len(b), len(a) - len(b) + 1) <= 60) { vc res(len(a) - len(b) + 1); FOR(i, len(res)) FOR(j, len(b)) res[i] += b[j] * a[i + j]; return res; } int n = 1 << std::__lg(2 * len(a) - 1); vc fa(n), fb(n); std::copy(a.begin(), a.end(), fa.begin()); std::copy(b.rbegin(), b.rend(), fb.begin()); ntt(fa, 0), ntt(fb, 0); FOR(i, n) fa[i] *= fb[i]; ntt(fa, 1); fa.resize(len(a)); fa.erase(fa.begin(), fa.begin() + len(b) - 1); return fa; } vc evaluation(vc f) { int n = len(f); if (n == 0) return vc(m, mint(0)); f.resize(2 * n - 1); vc> g(2 * sz); g[1] = T[1]; g[1].resize(n); g[1] = fps_inv(g[1]); g[1] = mid_prod(f, g[1]); g[1].resize(sz); FOR3(i, 1, sz) { g[2 * i] = mid_prod(g[i], T[2 * i + 1]); g[2 * i + 1] = mid_prod(g[i], T[2 * i]); } vc vals(m); FOR(i, m) vals[i] = g[sz + i][0]; return vals; } vc interpolation(vc& y) { assert(len(y) == m); vc a(m); FOR(i, m) a[i] = T[1][m - i - 1] * (i + 1); a = evaluation(a); vc> t(2 * sz); FOR(i, sz) t[sz + i] = {(i < m ? y[i] / a[i] : 0)}; FOR3_R(i, 1, sz) { t[i] = convolution(t[2 * i], T[2 * i + 1]); auto tt = convolution(t[2 * i + 1], T[2 * i]); FOR(k, len(t[i])) t[i][k] += tt[k]; } t[1].resize(m); reverse(all(t[1])); return t[1]; } }; template vc multipoint_eval(vc& f, vc& x) { if (x.empty()) return {}; SubproductTree F(x); return F.evaluation(f); } template vc multipoint_interpolate(vc& x, vc& y) { if (x.empty()) return {}; SubproductTree F(x); return F.interpolation(y); } // calculate f(ar^k) for 0 <= k < m // https://noshi91.github.io/algorithm-encyclopedia/chirp-z-transform#noredirect template vc multipoint_eval_on_geom_seq(vc f, mint a, mint r, int m) { const int n = len(f); assert(r != mint(0)); // a == 1 に帰着 mint pow_a = 1; FOR(i, n) f[i] *= pow_a, pow_a *= a; auto calc = [&](mint r, int m) -> vc { // r^{t_i} の計算 vc res(m); mint pow = 1; res[0] = 1; FOR(i, m - 1) { res[i + 1] = res[i] * pow; pow *= r; } return res; }; vc A = calc(r, n + m - 1), B = calc(r.inverse(), max(n, m)); FOR(i, n) f[i] *= B[i]; reverse(all(f)); f = convolution(f, A); f = {f.begin() + n - 1, f.end()}; f.resize(m); FOR(i, m) f[i] *= B[i]; return f; } #line 8 "main.cpp" using mint = modint998; using poly = vc; const int mod = 998244353; using PMAT = array, 2>; struct PM { using value_type = PMAT; using X = value_type; static X op(X x, X y) { // これは Nlog^2N なので、雑で大丈夫 → そうでもない説 int nx = 0, ny = 0; FOR(i, 2) FOR(j, 2) chmax(nx, len(x[i][j])); FOR(i, 2) FOR(j, 2) chmax(ny, len(y[i][j])); int n = nx + ny - 1; int fft_len = 1; while (fft_len < n) fft_len *= 2; FOR(i, 2) FOR(j, 2) { x[i][j].resize(fft_len); ntt(x[i][j], false); } FOR(i, 2) FOR(j, 2) { y[i][j].resize(fft_len); ntt(y[i][j], false); } X z; FOR(i, 2) FOR(j, 2) z[i][j].resize(fft_len); FOR(i, 2) FOR(j, 2) FOR(k, 2) { FOR(p, fft_len) z[i][k][p] += x[i][j][p] * y[j][k][p]; } FOR(i, 2) FOR(j, 2) { ntt(z[i][j], true); z[i][j].resize(n); } /* FOR(i, 2) FOR(j, 2) FOR(k, 2) { if (x[i][j].empty() || y[j][k].empty()) continue; poly f = convolution(x[i][j], y[j][k]); if (len(z[i][k]) < len(f)) z[i][k].resize(len(f)); FOR(p, len(f)) z[i][k][p] += f[p]; } */ return z; } static X unit() { PMAT x; x[0][0] = x[1][1] = {mint(1)}; x[0][1] = x[1][0] = {}; return x; } static constexpr bool commute = 0; }; void solve_1(int Q) { VEC(pi, query, Q); int MAX = 0; for (auto&& [n, k]: query) chmax(MAX, k); ++MAX; auto make_mat = [&](ll K) -> PMAT { PMAT x; x[0][0] = {mint(-K - K), mint(2)}; // 2N-2K x[0][1] = {mint(-K * (K - 1) / 2), mint(K)}; // KN - K(K-1)/2 x[1][0] = {mint(1)}; x[1][1] = {}; return x; }; const int b_sz = 2000; const int b_num = ceil(MAX, b_sz) + 1; vvc QID(b_num); FOR(q, Q) { auto [n, k] = query[q]; QID[k / b_sz].eb(q); } auto prod_range = [&](int L, int R) -> PMAT { assert(L < R); vc dat(R - L); FOR(i, R - L) dat[i] = make_mat(L + i); reverse(all(dat)); while (len(dat) > 1) { int n = len(dat); FOR(i, n) if (i % 2 == 1) { dat[i - 1] = PM::op(dat[i - 1], dat[i]); } FOR(i, n) if (i % 2 == 0) dat[i / 2] = dat[i]; dat.resize(ceil(n, 2)); } return dat[0]; }; vc ANS(Q); PMAT suffix_prod = PM::unit(); FOR(b, b_num) { // suffix_prod に必要なものたちを ME する vc X; for (auto&& q: QID[b]) { X.eb(query[q].fi); } if (len(X)) { SubproductTree ST(X); vc tmp(len(X)); { auto Y = ST.evaluation(suffix_prod[0][0]); FOR(k, len(X)) tmp[k].fi = Y[k].val; } { auto Y = ST.evaluation(suffix_prod[1][0]); FOR(k, len(X)) tmp[k].se = Y[k].val; } FOR(t, len(X)) { int qid = QID[b][t]; auto [N, K] = query[qid]; N %= mod; pi F = tmp[t]; FOR(k, b * b_sz, K) { F = {2 * (N - k) * F.fi + (k * (N + N - k + 1) / 2 % mod) * F.se, F.fi}; F.fi %= mod; } ANS[qid] = F.fi; } } suffix_prod = PM::op(prod_range(b * b_sz, b * b_sz + b_sz), suffix_prod); } FOR(q, Q) print(ANS[q]); } mint solve_2(ll N, ll K) { if (K >= mod) return 0; assert(K <= mod); poly f = {mint(2 * N), mint(N)}; poly g = {mint(1), mint(2), inv(2)}; mint fa = [&]() -> mint { vc f = {1, 1}; return prefix_product_of_poly(f, K).val; }(); mint ANS = fa * from_log_differentiation_kth(K, f, g); return ANS; } void solve() { INT(T); if (T <= 10) { FOR(T) { LL(N, K); print(solve_2(N, K)); } return; } return solve_1(T); } signed main() { solve(); return 0; }