#line 1 "library/my_template.hpp" #if defined(LOCAL) #include #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include using namespace std; using ll = long long; using pi = pair; using vi = vector; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vec(type, name, ...) vector name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template T SUM(const vector &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T pick(deque &que) { T a = que.front(); que.pop_front(); return a; } template T pick(pq &que) { T a = que.top(); que.pop(); return a; } template T pick(pqg &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template T pick(vc &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template vc bincount(const vc &A, int size) { vc C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template vector argsort(const vector &A) { vector ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { int n = len(I); vc B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #endif #line 1 "library/other/io.hpp" // based on yosupo's fastio #include namespace fastio { // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_write : public decltype(has_write_impl::check(std::declval())) { }; struct has_read_impl { template static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_read : public decltype(has_read_impl::check(std::declval())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template ::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template void read_single_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); read_single(x); read_single_tuple(t); } } template bool read_single(tuple &tpl) { read_single_tuple(tpl); return true; } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template ::value>::type * = nullptr> inline void write(T x) { x.write(); } template void write(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair val) { write(val.first); write(' '); write(val.second); } template void write_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get(t); write(x); write_tuple(t); } } template bool write(tuple tpl) { write_tuple(tpl); return true; } template void write(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/alg/monoid/add.hpp" template struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "library/ds/fenwicktree/fenwicktree.hpp" template struct FenwickTree { using G = Monoid; using E = typename G::value_type; int n; vector dat; E total; FenwickTree() {} FenwickTree(int n) { build(n); } template FenwickTree(int n, F f) { build(n, f); } FenwickTree(const vc& v) { build(v); } void build(int m) { n = m; dat.assign(m, G::unit()); total = G::unit(); } void build(const vc& v) { build(len(v), [&](int i) -> E { return v[i]; }); } template void build(int m, F f) { n = m; dat.clear(); dat.reserve(n); total = G::unit(); FOR(i, n) { dat.eb(f(i)); } for (int i = 1; i <= n; ++i) { int j = i + (i & -i); if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]); } total = prefix_sum(m); } E prod_all() { return total; } E sum_all() { return total; } E sum(int k) { return prefix_sum(k); } E prod(int k) { return prefix_prod(k); } E prefix_sum(int k) { return prefix_prod(k); } E prefix_prod(int k) { E ret = G::unit(); for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { return prod(L, R); } E prod(int L, int R) { if (L == 0) return prefix_prod(R); assert(0 <= L && L <= R && R <= n); E pos = G::unit(), neg = G::unit(); while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; } while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; } return G::op(pos, G::inverse(neg)); } void add(int k, E x) { multiply(k, x); } void multiply(int k, E x) { static_assert(G::commute); total = G::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x); } template int max_right(const F check) { assert(check(G::unit())); int i = 0; E s = G::unit(); int k = 1; while (2 * k <= n) k *= 2; while (k) { E t = G::op(s, dat[i + k - 1]); if (check(t)) { i += k, s = t; } k >>= 1; } return i; } int kth(E k) { return max_right([&k](E x) -> bool { return x <= k; }); } }; #line 2 "library/ds/offline_query/point_add_rectangle_sum.hpp" template struct Point_Add_Rectangle_Sum { using G = typename AbelGroup::value_type; using Point = tuple; vector point; vector> rect; Point_Add_Rectangle_Sum() {} void add_query(XY x, XY y, G w) { point.eb(x, y, w); } void sum_query(XY xl, XY xr, XY yl, XY yr) { rect.eb(xl, xr, yl, yr); } vector calc() { int N = point.size(), Q = rect.size(); if (N == 0 || Q == 0) return vector(Q, AbelGroup::unit()); // X 方向の座圧 int NX = 0; if (!SMALL_X) { sort(all(point), [&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); }); vc keyX; keyX.reserve(N); for (auto &&[a, b, c]: point) { if (len(keyX) == 0 || keyX.back() != a) { keyX.eb(a); } a = len(keyX) - 1; } for (auto &&[xl, xr, yl, yr]: rect) { xl = LB(keyX, xl); xr = LB(keyX, xr); } NX = len(keyX); } if (SMALL_X) { XY mx = numeric_limits::max(); for (auto &&[x, y, g]: point) chmin(mx, x); for (auto &&[x, y, g]: point) x -= mx, chmax(NX, x + 1); for (auto &&[xl, xr, yl, yr]: rect) { xl -= mx, xr -= mx; xl = max(0, min(xl, NX)); xr = max(0, min(xr, NX)); } } vc> event(Q + Q); FOR(q, Q) { auto &[xl, xr, yl, yr] = rect[q]; event[2 * q] = {yl, xl, xr, 2 * q}; event[2 * q + 1] = {yr, xl, xr, 2 * q + 1}; } sort(all(point), [&](auto &x, auto &y) -> bool { return get<1>(x) < get<1>(y); }); sort(all(event), [&](auto &x, auto &y) -> bool { return get<0>(x) < get<0>(y); }); FenwickTree bit(NX); vc res(Q, AbelGroup::unit()); int j = 0; for (auto &&[y, xl, xr, qq]: event) { while (j < N && get<1>(point[j]) < y) { bit.add(get<0>(point[j]), get<2>(point[j])); ++j; } G g = bit.sum(xl, xr); int q = qq / 2; if (qq % 2 == 0) g = AbelGroup::inverse(g); res[q] = AbelGroup::op(res[q], g); } return res; } }; #line 4 "main.cpp" void solve() { LL(N, K, L, P); VEC(pi, AB, N); using T = tuple; auto calc = [&](int L, int R) -> vc { vc dp = {{0, 0, 0}}; dp.reserve(1 << (R - L)); FOR(i, R - L) { auto [x, y] = AB[L + i]; FOR(s, 1 << i) { auto [a, b, c] = dp[s]; dp.eb(a + 1, b + x, c + y); } } return dp; }; auto dp1 = calc(0, N / 2); auto dp2 = calc(N / 2, N); const ll INF = 1LL << 60; ll ANS = 0; FOR(sz, N / 2 + 1) { // 左側の大きさが sz if (sz > K) break; Point_Add_Rectangle_Sum, ll, 0> X; for (auto&& [a, b, c]: dp1) { if (sz == a) X.add_query(b, c, 1); } for (auto&& [a, b, c]: dp2) { if (sz + a <= K) X.sum_query(-INF, L - b + 1, P - c, INF); } ANS += SUM(X.calc()); } print(ANS); } signed main() { solve(); return 0; }